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Abstract Overview 

Our work aims to develop machine-learning methods to quantify compounds from Electron Ionization 
Mass Spectrometry (EI-MS). This technique uses high-energy electrons (70-75 eV) to ionize and fragment 
the molecules of a compound entering a mass spectrometer, and the resulting spectrum is characteristic of 
the species. The total signal is proportional to species concentration through the electron ionization cross 
section, and the ratio of the total ionization cross sections of two compounds is mainly dependent on the 
molecular structures of the compounds. In the present study, linear regression analysis and artifical neural 
network analysis are performed. Molecular descriptors using the concepts of atom, bond, and group 
additivities are used to predict electron-ionization cross sections. Experimental measurements of EI cross 
sections of 372 compounds reported in the literature from 1951 to 2019 are being used as training data for 
the neural network.  
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Introduction

Electron ionization mass spectrometry (EI-MS) is used 
worldwide to identify and quantify various organic and 
inorganic compounds. This technique uses high-energy 
electrons (70-75 eV) to ionize the molecules of a compound 
entering to a spectrometer. Once the molecule is ionized, it 
automatically goes through further fragmentation. During 
this fragmentation process, positive ions, negative ions, and 
radicals are generated. In time-of-flight mass spectrometry, 
a positive pulse of voltage propels the positive ions through 
a flight tube. Ions with low mass travel faster than heavier 
ions, and all of them are detected at the end of the flight 
tube, assigned masses by their arrival times, and counted. 
The result is a histogram where the x-axis is mass-to-charge 
ratio (in most of the cases the charge is unity) and the y-axis 
is total signals of different positive ion fragments. For an 
electron-ionization mass spectrum at 70 to 75 eV, the 
fragmentation pattern normalized to the maximum-sized 

signal (or base-ion signal) is characteristic of a species and 
its molecular features (McLafferty et al., 1993). Electron 
ionization is generally applied to mixtures by first resolving 
the individual species using gas or liquid chromatography 
so that a nominally pure component is introduced to the 
mass spectrometer. Analysis software typically reports on 
the similarity of the species-fragment spectrum from the 
experiment relative to the mass spectra of species in the 
mass spectral library. The quantification of total positive-
ion current of an identified species is performed by using a 
linearity relationship (Eq. 1) with the number density N of 
the vaporized/gaseous species: 

 
𝐼"# = 𝑄	𝐼'	𝑑	𝑁"  (1)                    

where 𝐼"# is the current of total positive ions detected for 
species i, 𝐼' is the ionizing-electron current, d is the ionizing 
path length, and 𝑁" is the number density of the species i, 



  
 
which is equal to its quantity in moles, times Avogadro 
number (A) and volume of the ionization region (V).  

Equation 1 is the characteristic equation for electron 
ionization by collision of a parallel electron beam with 
homogeneous velocities with solid spherical particles 
[Massey and Burhop, 1952]. For monoatomic gases, there 
is one characteristic length of a particle; i.e., diameter of the 
spherical atoms. For polyatomic gases, the spherical cross-
section is viewed as an average of all the cross-sections of 
all characteristic lengths. The ionizing path length and the 
volume of the ionization chamber are instrument-specific. 
On the other hand, the ionizing electron current is specific 
to experimental conditions, such as type and temperature of 
ion source. The total electron ionization cross section is 
specific to a species and its molecular structure at a fixed 
energy of ionizing electrons. Thus, the ratio of total EI cross 
sections of two species at a fixed eV should be independent 
of instrument type and experimental conditions, so it can be 
cross-checked for interlaboratory reproducibility.  

Issues with electron ionization 

One major limitation of this technique is the possibility 
of mis-identification of compounds. Prediction of spectra 
for species might be a long-term answer to this issue. 

Simple comparison of the experimental mass spectra 
with mass spectra from a mass spectral library, such as 
NIST/EPA/NIH Mass Spectral Library [NIST 2019], can 
lead to wrong identification of those compounds whose 
mass spectra are not available in that library. One reason 
might be the unavailability of an authentic sample of the 
compound. An example is anhydro-xylopyranose, 
generated during hemicellulose pyrolysis process. As this 
compound is commercially unavailable, its 70-eV EI mass 
spectrum is not available in any mass spectral library. Thus, 
identification and quantification of this compound possess 
a challenge.  

There is another class of compounds which are 
available along with their 70-eV EI mass spectra, but due to 
their instability in calibration solution, they break apart into 
smaller species before reaching the mass spectrometer. 
Various sugars such as D-xylose and D-glucose exhibit this 
behavior in methanolic or acetonic solutions.   

Issues with EI cross sections 

Our first, near-term goal is to predict of total EI cross-
sections of species to aid quantitation. In the past, efforts 
have been made to understand the total EI cross-sections of 
various homologous group series (or classes) of carbon-
based compounds in terms of various descriptors, including 
carbon number, molar volume, polarizability volume, and 
dynamic susceptibility [Harrison et al., 1967]. 
Unfortunately, no general trends over all classes are 
observed, and no good and simple correlations have been 
found at 70-75 eV with these descriptors. Thus, the 
prediction of cross-sections with these individual 
descriptors is difficult. Furthermore, descriptors such as 

polarizability volume and dynamic susceptibility are not 
easily available. It makes the prediction more difficult.  

A large effort has been put into developing classical 
and semi-classical, and quantum methods of total ionization 
cross-section. The major limitations of these methods are 
the limited experimental cross section data for complex 
molecules, time-consuming computations, and difficulty in 
implementation.  

In 1983, Fitch and Sauter proposed two linear 
correlations for EI cross-sections of compounds relative to 
n-hexane at 70-75 eV. These two simple correlations are 
based on atom additivity, one having no hybridization and 
another having the hybridization of C and O. Fitch and 
Sauter considered the interlaboratory datasets of 179 
compounds encompassing cross-section data of n-alkanes, 
n-alkenes, n-alkynes, cycloalkanes and -alkenes, n-phenyl-
alkanes, various halides, linear aldehydes, linear ketones, 
two nitrogen compounds, two deuterated alkanes and H2S. 
For these datasets, linear regression and cross validations 
were performed to find the coefficients. A major advantage 
of the correlations is that they are easy to implement for any 
electron ionization mass spectrometer if the calibration 
behavior of a species of known cross-section is present, 
such as n-hexane. However, there are certain limitations. 
First, these two correlations are based only on atom 
additivity. Thus, they provide same relative cross-sections 
of any two isomers with the same atom hybridizations. 
Moreover, due to the limitations of the datasets, 
hybridizations of N and S are not considered.  

A possible solution 

In the present study, relative EI cross-sections of total 
54 compounds at 70 eV are experimentally estimated using 
n-hexane as the reference compound. Calibrations of 
various linear and heterocyclic oxygenates, alkanes and 
polynuclear aromatic hydrocarbons (PAHs) are performed 
in a two-dimensional gas chromatograph (GC x GC, Leco) 
followed by a time-of-flight mass-spectrometer (TOFMS, 
Pegasus 4D). Finally, population means of the relative cross 
sections (of 372 compounds) are calculated using various 
interlaboratory datasets. The database has relative 70-75 eV 
cross sections of 22 linear alkanes, 13 linear alkenes, 9 
linear alkynes, 5 cycloalkanes, 1 cycloalkene, 25 phenyl 
hydrocarbons, 10 PAHs, 5 deuterated compounds, 13 
alcohols, 7 aldehydes, 19 ketones, 10 ethers, 23 esters, 3 
carboxylic acids, 1 anhydride, 20 compounds with multiple 
and different oxygen-based side groups, 4 linear C-H-S 
compounds, 4 linear C-H-N compounds, 99 halocarbons, 31 
heterophenyls, 4 C-H-N heterocyclics, 5 RNA/DNA bases, 
14 furan compounds, 3 dioxane compounds, 3 oxirane 
compounds, 3 other heterocyclic compounds, and 15 
industrial gases/liquids.  Two separate analyses are 
performed on this database, one using hybridization of 
atoms as descriptors (such as, H, D, F, Cl, Br, I, C 𝑠𝑝,, C 
𝑠𝑝-, C 𝑠𝑝, O 𝑠𝑝,, O 𝑠𝑝-, N 𝑠𝑝,, N 𝑠𝑝-, N 𝑠𝑝, S 𝑠𝑝,, and S 
𝑠𝑝-) and the other one using 95 various Benson-type groups 
as descriptors.  Although the atom additivity-based 



  

correlations cannot differentiate isomers with same atomic 
hybridizations, they are useful for light and small molecules 
where defining groups are difficult. Often the first molecule 
member of a homologous group-series falls in this category. 
However, group additivity is more detailed and sensitive to 
isomers.  

Under each modeling project, linear regressions are 
performed using cross-validation. An artificial neural 
network (Multi-Layer Perceptron with backpropagation and 
RelU as activation function) with a simple architecture (1 
hidden layer with two perceptron) is used in both projects 
to explore the non-linear behaviors using machine learning 
toolbox in MATLAB. Randomly chosen 70% of the data 
are used for training and the remaining 30% of the data are 
used for testing purposes. Iterations are performed until the 
change of each weighting factor falls below a critical value. 
After the modeling is completed, sensitivity analyses are 
performed to reduce the less contributing descriptors. After 
that, the modeling is repeated one more time.  

Finally, predictive models are developed to verify and 
modify the Fitch and Sauter correlations for EI cross-
sections to using atom and group additivities with linear 
regression models and artificial neural networks. However, 
deep learning will not be possible with the limited amount 
of dataset [A. Geron, 2017]. 

Conclusions 

We are developing linear regression models and 
artificial neural network (ANN) models to predict relative 
ionization cross sections of various molecules by 70 eV 
electrons. Due to the popular usage of n-hexane as non-
polar solvent and its easy availability in experimental 
laboratories, it is used as reference compound. A dataset of 
372 compounds is used to develop atom-additivity-based 
and group-additivity-based linear correlations and artificial 
neural networks with a simple architecture.  
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