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Abstract Overview 

Detailed herein is a discussion of the integration of machine learning algorithms with microfluidic optical 

sampling strategies towards, continuous, real-time optimization of colloidal semiconductor nanocrystals. 

We have developed an automated, gas-liquid segmented flow platform which collects inline UV-Vis 

absorption (A) and photoluminescent (PL) spectra on equilibrated, continuous flowing systems with set 

reactant compositions. Using a novel, reduced pathlength tube-based optical flow cell and dynamic spectra 

processing algorithms we may derive, in real-time, the peak emission energy (PE), full width at half 

maximum of the emission spectra (FWHM), and photoluminescent quantum yield (PLQY). These 

measurements are integrated into an off-set feedback system paired with a machine learning algorithm, 

which controls the proceeding flow conditions to test. Using this device, we have optimized the 

composition of the reactive phase in the post-synthesis halide exchange of cesium-lead-trihalide 

perovskite quantum dots (PQDs) in real-time. Through the direct control of PQD, exchanging zinc halide 

(ZnX2), zinc bromide (ZnBr2), oleic acid (OA), and oleylamine (OLA) concentrations as well as the 

exchanging halide (X=Cl or I) a weighted three-parameter optimum was obtained within 238 samples. 
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Introduction

In the past decade PQD electronic devices have seen a 

sudden emergence in their study and application due to their 

favorable electronic properties in photovoltaics, 

photocatalysis, and light emitting diodes as well as their 

accessibility towards low-cost solution phase processing 

strategies. These materials could very likely produce the 

next generation of many commercial devices invoking 

lower costs and greater efficiencies as well as proliferating 

the availability of harnessed solar energy. However, among 

the inherent issues of these materials is the difficulty that 

comes with controlling the complex reaction space 
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associated with PQD syntheses. Even after choosing a 

single reaction pathway among the thousands of different 

perovskite compositions and methods, the end product 

remains heavily dependent on the relative precursor ratios 

in the reactive solution, which itself encompasses an 

inaccessibly large environment – as illustrated in Figure 1. 

In response to this inherent need in the study of the 

material group, many microfluidic strategies have been 

developed to evaluate in situ colloidal growth of 

semiconductor nanocrystals. These systems enable high-

throughput reaction screening at low chemical costs and are 



  

 

 

inherently more accessible to automated reaction control 

through inline flow measurement methods. These 

techniques reduce the labor costs, variability, and sampling 

time and consumption over batch screening strategies, 

allowing more comprehensive studies of the materials. Our 

prior work has established effective methods for carrying 

out these reactions in flow as well as using optical flow cells 

for inline synthesis monitoring. The work reported here 

marks the first integration of these strategies with 

intelligent, real-time optimization methods.  

Microfluidic Design 

The microfluidic system used in this study – shown in 

Figure 2 – consists of off the shelf tubular components, 

which allow for modular control of the reactor 

configuration and low-cost replacement of the various 

components. The flow in the system is driven by three 

continuous flow positive displacement (CFP) pumps and 

three syringe pumps. Note that syringe pumps are used for 

precursors that either require lower flow rates or have 

viscosities that are not conducive to accurate CFP driven 

flow. The ZnX2 is chosen with a binary channel selector 

valve and all precursors are fed into a series of cross-

junctions to combine. They are then mixed in a braided 

tubing micromixer, combined with the PQD stream in a tee-

junction, mixed again, then segmented into gas-liquid flow 

in a final tee-junction connected to an argon mass flow 

controller (MFC). The segmented slugs move in the coiled 

reactor tubing for 90 seconds before inline PL/A sampling. 

The automated reactor controls also feature a toluene flush 

between each condition, a halide purge stage when 

transitioning to a different source, and a delayed start for the 

PQD CFP to reduce chemical consumption. The process is 

carried out at a sampling rate of 10 samples/hr and requires 

approximately 0.4 mL of reagents per sample. 

Inline PL/A sampling is performed with a custom 

reduced pathlength flow cell, which compresses the reactor 

tubing at the sampling point to allow for an ~100 µm 

pathlength between the spectrometer and deuterium 

halogen light source for A spectra collection. PL spectra are 

subsequently collected by shining a 365 nm high powered 

LED onto the center of the flattened tubing at a 50O angle 

to the spectrometer. This modified flow cell design allows 

for inline reaction studies without reducing overall reactant 

concentrations. 

Figure 1.  (A) Illustration of six-dimensional sampling 

space with three detectable outputs for the post-synthesis 

halide exchange of PQDs and (B) comparison chart 

between batch and microfluidic reaction screening  

Figure 2.  Schematic of custom microfluidic system 



  

 

Machine Learning Method 

The optimization strategy applied in this study was a 

custom neural network (NN) bracketing algorithm. This 

program randomly creates a list of 212 input sets with values 

within the previously determined bounds of the system. 

These sets are then paired up and scored using a sequence 

of neural networks, the size and accuracy of which is 

correlated with the size of the test and training sets. The 

scores are determined by comparing the predicted output 

with a previously stated target value. The quality of an 

output value set is quantified through a weighted average of 

the proportional distance from the set-point values of PE, 

FWHM, and PLQY (90, 5, and 5% respectively). Maxima 

(minima) are found by raising (lowering) the target value if 

a trial run produces a value over (under) the target. Next, 

the scores of paired sets are compared, and the less accurate 

set is removed from the system. This process is repeated 

until only one data set remains, at which point its contents 

are passed along for testing. Each replication produces 

larger training data sets, leading to more accurate 

measurements and guesses. This procedure is carried out for 

each round of sample collection with an offset sampling 

time between the optimization algorithm and microfluidic 

device (i.e. where the microfluidic device is sampling the 

nth condition while the optimization algorithm uses data 

from the nth-1 samples to select the conditions for the nth+1 

sample). 

Result 

Using this NN bracketing algorithm with the integrated 

microfluidic sampling device, a setpoint PE value of 2.2 eV 

yielded an equlibrated result  in 238 samples within one day 

without any prior training – as shown in Figure 3. 

Conclusions 

The success of this platform and strategy in the blind 

optimization of a single setpoint value lays out an 

opportunity for future work with more comprehensive and 

varied data availability and more advanced machine 

learning systems. A systematic study of the influence of NN 

pretraining and optimization methods will not only unlock 

the optima of post-synthesis halide exchange but also 

reduce the development time for many other future colloidal 

semiconductor nanocrystal synthesis strategies. 
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Figure 3.  Blind optimization results of the bracketing algorithm using a PE setpoint value of 2.2 eV 


