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Abstract Overview 

Production surveillance is the task of monitoring oil and gas production from every well in a hydrocarbon field. Accurate 

surveillance is a basic necessity for several reasons that include improved hydrocarbon accounting, improved resource 

management, reduced operational cost, and ultimately optimal hydrocarbon production. A key challenge in this task, for 

large fields with many wells, is the measurement of multi-phase fluid flow using a limited number of noisy sensors of 

varying characteristics. Current surveillance practices are based on fixed utilization schedules of these flow sensors, which 

rarely change over time. Such a passive mode of sensing is completely agnostic to surveillance performance, thus, it often 

fails to achieve a desired accuracy. Here we propose an approach of active surveillance, underpinned by the concept of value 

of information based sensing. Borrowing some well-known concepts from optimal experiment design, reinforcement 

learning and artificial neural networks, we demonstrate that a practical active surveillance strategy can be devised that not 

only can improve surveillance performance significantly, but also reduce usage of flow sensors.    
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Introduction

In many industrial applications involving complex 

systems, there is a need to monitor/probe a physical domain 

to gather adequate data necessary for informed decision 

making. However, it is usually unclear how to optimally 

deploy sensors to fulfill such data requirements. The 

absence of a systematic sensor deployment strategy often 

leads to the collection of huge volumes of data, albeit with 

little information therein. In this era of ever-cheaper sensor 

technology and large sensor networks, the need for smarter 

sensor deployment strategies is stronger than ever. Consider 

the example of production surveillance in a large onshore 

hydrocarbon field, where the goal is to accurately monitor 

the production rates of thousands of wells individually. This 
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is challenging for many reasons, such as disparate, 

multiphase flow-meters of varying fidelities and costs, well-

comingling, evolving surface and subsurface conditions, 

time varying sensor noise and the sheer number of wells to 

be monitored continuously (Tewari et al., 2018). The 

current practice of production surveillance in the oil and gas 

industry is primarily based on predetermined schedules for 

sensor deployment. As a result, it may be possible to 

monitor production at a coarser level (a well group), but it 

is extremely difficult to obtain accurate production 

estimates for individual wells. 

 



  

 

 

In this work, we propose an active sensing strategy for 

production surveillance, where the sensors are no longer 

deployed based on a pre-determined schedule. Instead, at 

every time step (e.g., a day) an optimal deployment 

schedule is identified on the fly. Mathematically, the 

problem can be cast as a Partially Observed Markov 

Decision Process (POMDP), which is an extensively 

studied research area in the optimization and control 

communities. In a nutshell, a POMDP breaks down the 

optimal sensor deployment in two distinct steps: state 

estimation and sensor optimization. The former updates our 

current knowledge of the system state (in this case, the 

production rates of individual wells) given new 

measurements, and explicitly characterizes the uncertainties 

in state estimates. The latter determines an optimal plan of 

sensor deployment for the next time step by optimizing a 

cost function with two competing objectives; maximizing 

the information gain (uncertainty reduction) and 

minimizing the sensing cost. 

Theory 

Consider a setting where we are interested in inferring 

rates 𝑥𝑡 ∈ ℝ𝑛 at time 𝑡 from 𝑛 wells using a subset of a total 

of 𝑚 possible measurements 𝑦𝑡 = [𝑦𝑡
1, 𝑦𝑡

2 ⋯ 𝑦𝑡
𝑚]𝑇 of 

varying fidelities and costs. Assume that the 

measurements are a linear function of the rates with an 

additive Gaussian noise of known variance, i.e. 

𝑦𝑡
𝑖|𝑥𝑡~ 𝒩(ℎ𝑖

𝑇𝑥𝑡 , 𝜎𝑖), ∀ 𝑖 ∈ {1,2, ⋯ , 𝑚} . Let ℳ𝑡 denote a 

set of indices of measurements selected at time 𝑡. Thus, the 

subset 𝑦𝑡(ℳ𝑡) has a multivariate normal distribution, 

𝑦𝑡(ℳ𝑡)|𝑥𝑡 ~ 𝒩(𝐻(ℳ𝑡)𝑥𝑡 , 𝑅(ℳ𝑡)), conditioned on the 

rates 𝑥𝑡. The matrix 𝐻 ∈ ℝ𝑚×𝑛 contains all measurement 

functions: 𝐻 = [ℎ1, ℎ2 ⋯ ℎ𝑚]𝑇, and the matrix 𝐻(ℳ𝑡) ∈

ℝ|ℳ𝑡|×𝑛 is obtained by selecting the rows of 𝐻 

corresponding to the elements of ℳ𝑡. Similarly, the 

diagonal matrix 𝑅(ℳ𝑡) encodes the noise variance of the 

selected measurements. Given a Gaussian distribution of 

rates at previous time step, 𝑥𝑡−1 ~ 𝒩(𝜇
𝑡−1

, Σ𝑡−1), a linear 

dynamics on 𝑥  specified by the matrix 𝐴 ∈ ℝ𝑛×𝑛  and a 

process noise covariance 𝑄 ∈ ℝ𝑛×𝑛,  a standard result from 

Bayesian inference yields a Gaussian posterior distribution 

of rates i.e. 𝑥𝑡|𝑦(ℳ𝑡) ~ 𝒩(𝜇𝑡 , Σt), where covariance Σt is 

given by equation (1),  

Σt = Σ̃𝑡−1 − Σ̃𝑡−1𝐻(ℳ𝑡)𝑇 (𝐻(ℳ𝑡)Σ̃𝑡−1𝐻(ℳ𝑡)𝑇

+ 𝑅(ℳ𝑡))
−1

𝐻(ℳ𝑡)Σ̃𝑡−1  , 

      (1) 

with Σ̃𝑡−1 = 𝐴Σ𝑡−1𝐴𝑇 + 𝑄. For static systems (time 

independent) where the measurements are to be chosen only 

once, the problem of best subset selection is thoroughly 

studied in experiment design research. To this end, several 

optimality criteria (𝐴-optimality, 𝐷-optimality, 𝑄-

Optimality, etc.) have been proposed to optimize some 

metric defined on the posterior covariance matrix Σt (Shah 

and Sinha, 1989). For example, the 𝐴-optimality criterion 

finds a subset that minimizes the trace of posterior 

covariance. When coupled with the known costs of 

measurements, these criteria help navigate the tradeoff 

between information gain and sensing cost by posing an 

optimization problem of the following form,  

arg min  
ϕ(ℳ𝑡)

 𝜙(ℳ𝑡)     s. t.    𝜙(ℳ𝑡) = tr(Σt) + 𝑐(ℳ𝑡). 

      (2)                             

The composite cost 𝜙(ℳ𝑡) combines the 𝐴-optimality 

criterion, tr(Σt), and the cost, 𝑐(ℳ𝑡), of choosing the 

measurement subset ℳ𝑡. In a dynamic setting, the 

optimization becomes trickier as it is often desirable to 

minimize a cost defined over a future time horizon, as 

shown in (3), via a discount factor 𝛾 ∈ [0,1). The discount 

factor provides a knob to appropriately down-weight future 

costs. 

arg min  
ℳ𝑡, ℳ𝑡+1, ℳ𝑡+2,⋯

[𝜙(ℳ𝑡) + 𝛾𝜙(ℳ𝑡+1) + 𝛾2𝜙(ℳ𝑡+2) + ⋯ ] 

      (3) 

The optimization problem in (3) is combinatorial and 

considerably harder to solve than (2) even if the horizon is 

finite. A key insight that allows an efficient solution of (3) 

is that the discounted cost is completely specified by the 

time evolution of Σt, which admits deterministic, 

Markovian dynamics as given by equation (1). As a result 

the problem of optimal measurement subset selection can 

be modeled as a Markov Decision Process (MDP) 

(Puterman, 1994). With this insight, we appeal to methods 

from Deep Reinforcement Learning, which exploit the 

Bellman optimality criterion for MDPs (Lagoudakis, 2017) 

and the universal function approximation capability of deep 

neural networks (Cybenko, 1989) to yield an extremely 

tractable optimization problem as given in (4),  

arg min 
ℳ𝑡

  𝑄∗(Σt, ℳ𝑡) 

      (4) 

where 𝑄∗(Σt, ℳ𝑡) is called an optimal state-action value 

function that is learned using a deep neural network. Refer 

to (Minh et al., 2013) for more details on this subject. 

Experimental Results 

Experiments are conducted in a simulated environment 

to evaluate different sensor deployment strategies. The need 

of simulation stems mainly because it provides access to 

true rates, which is necessary for an objective comparison. 

Similar information from an oil field is not only proprietary 

but also cost prohibitive to obtain. The simulations are 

governed by a dynamic production model available in 

public domain (Tewari et al., 2018). We choose a well 

configuration, shown in figure 1, of eight wells feeding into 

a multiphase flow-meter called test-separator. The wells 

are grouped into two groups of four for the purpose of flow 

measurement, a practice known as well-comingling. During 

this process one or more wells from a group can be shut to 

gain more information about individual well production. 

The measurement noise variance of the test-separator is 

assumed to be 4 and 15 for groups 1 and 2, respectively. 



  

 

Such variations in noise characteristics are quite common in 

the field. An additional mode of sensing, called spin-cuts, is 

assumed available, which involves manually taking 

multiphase fluid samples from a well and measuring water 

to oil ratio. Spin-cuts are accurate but expensive. The usage 

costs of test-separator and spin-cut are assumed 10 and 100 

units respectively. 

  

   

Figure 1. A well configuration used for comparative 

study of passive & active surveillance approaches 

 

 

 

Figure 2. Production surveillance result of one of the 

eight wells using the two sensing approaches. The 

estimated rates using the passive sensing approach 

exhibit higher bias and uncertainty (with respect to 

the ground truth) compared to the active sensing 

approach. In addition, active sensing required 25 

fewer well tests than its counterpart. 

 

The passive sensing approach uses a fixed schedule of 

sensor deployment as follows. A well group is channeled 

through a test-separator every 3rd day, and a spin-cut is done 

on a well once every 3 months. Active-sensing, on the other 

hand, uses the proposed approach to deploy sensors as 

needed. Note that the decision of shutting a well (or wells) 

during a test-separator measurement is considered a type of 

sensor deployment. The estimated rates from one of the 8 

wells is shown in figure 2 for both sensing strategies along 

with the true rates. Active sensing not only improved 

surveillance performance but also reduced the sensing cost 

by requiring 25 fewer test-separator measurements.  

Conclusion 

In this work we outline an information theoretic 

approach for production surveillance in oil fields, a task 

which is often hampered by inadequate sensing resources 

and continuously evolving subsurface conditions. The 

approach is grounded on the principal of information based 

planning that actively deploys sensors when and where the 

need is the most, while being cognizant of sensing cost. A 

proof of concept, in a simulated environment, clearly 

demonstrates advantages over the current practice of 

passive surveillance. Additionally, the proposed sensor 

planning approach is conceptually portable to other 

application areas of relevance to oil & gas industry such as 

seismic surveys, methane leak detection, loss-prevention 

systems, and seabed seep detection. 
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