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Abstract Overview 

Thermodynamically small systems, with a number N of interacting particles in the range of 1-1000, are 
increasingly of interest in science and engineering. While the thermodynamic formalism for bulk 
systems, where N approaches infinity, was established long ago, the thermodynamics of small systems is 
currently approached by adding new variables in a somewhat ad hoc fashion. We propose a more 
rigorous approach based on machine learning (ML), which we demonstrate by applying both supervised 
(neural network) and unsupervised (diffusion map) ML methods to large data sets from Monte Carlo 
simulations of systems comprising N=3 Lennard-Jones particles in a three-dimensional periodic box. 
The ML methods clearly identify structural and energetic changes that occur in this model system and 
effectively reduce the dimensionality from nine to either two or one. Work is ongoing to correlate the 
reduced variables with geometric properties of the original system and to study systems with a larger N. 
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Systems with a finite number of interacting particles 
are increasingly of interest due to applications in 
nanotechnology (Hill, 2001). Such systems require an 
adjustment to the fundamental thermodynamic equations 
developed for infinite (bulk) systems. One common 
example is the addition of a surface energy term to 
describe bubbles or droplets. However, for very small 
systems, e.g. with a few to a few thousand particles, the 
usual definitions of surface area and even volume may 
become ambiguous or non-applicable, so other variables 
must be identified. Here we demonstrate how machine 
learning (ML) can be systematically applied to this task.  

Model System and Data Sets 

The model system was a set of three particles 
interacting through the well-known Lennard-Jones (LJ) 

pairwise potential in a three-dimensional box with periodic 
boundary conditions (Allen & Tildesley, 1987). With three 
particles and three dimensions, this is effectively a nine-
dimensional system. The box was 10s on a side, where s 
is the LJ particle diameter. The system was simulated 
using the conventional canonical Monte Carlo algorithm at 
a dimensionless temperature T* = kT/ε = 0.18, where k is 
the Boltzmann constant and e is the LJ energy parameter 
characterizing the well depth or ‘bond’ strength. The 
potential energy was tracked throughout the simulation 
trajectory and configuration ‘snapshots’ were saved at 
regular intervals for later analysis by the ML techniques. 
In the following, the potential energy is reported in a 
dimensionless, per particle basis as u* = U/3e, where U is 
the total potential energy arising from the sum of the three 
pairwise contributions. 



  
 

 

Figure 1(a) shows the different structural motifs that 
were observed in snapshots of the system, ranging from 
tightly clustered to completely dissociated. Figure 1(b) 
shows a histogram of the potential energies that were 
sampled in the simulation trajectory. Clearly the system 
sampled the range of possible values, since a tightly 
clustered state will have three pairwise ‘bonds,’ each 
contributing -e, for a value of u* = -1, while a completely 
dissociated state will have no ‘bonds’ for a value of u* = 0. 
In fact, we chose the temperature value T* = 0.18 because 
all of these different structural motifs and potential 
energies were observed in a single trajectory. At this point 
one might attempt to assign peaks in the histogram to 
specific structural motifs, but as we will see from the ML 
results below, such assignment is not straightforward. 

 

 
Figure 1. Results from the Monte Carlo simulation. 

(a) Representative snapshots showing the four major 
observed structural motifs: (i) tightly clustered, (ii) linear, 
(iii) partially dissociated, and (iv) completely dissociated. 

(b) Histogram of dimensionless potential energy u*. 

Machine Learning Methods 

We employed two ML methods, namely neural 
networks and diffusion maps, to see if the configurational 
data sets from the Monte Carlo simulations could be used 
to reduce the full nine dimensions of the model (xyz 
coordinates of the three particles) to a lower-dimensional 
space. 

Neural networks (Russel et al., 2009) are designed to 
model complex non-linear transformations. We designed a 
neural network to be a dimensionality reduction machine. 
The neural network had four layers, with the first layer 
being the input layer (H) which we defined to be the high 
dimensional space of the three xyz coordinates in a 
‘snapshot’ (dim = 9). The second and third layers (dim = 
11 and 6 respectively) were meant for pattern recognition 
and the fourth layer (dim = 2) was defined as our reduced 
dimension (L). The output layer (dim = 1) is defined to be 
u*. The network was trained to accurately predict u* using 
the gradient-descent optimization technique. The result 
was the following mapping: 

For every point x in H, there exists a point x* in L 
such that:  

u*(x)=u*(x*);   dim(L) << dim(H). 
 
Diffusion maps (Coifman et al., 2005) was the other 

ML method employed in this work. In DMap, a kernel 
matrix is constructed for the data set based on the distance 
dij between the (i,j) pairs of data points, as 
  

 
(1) 

 
where d is the kernel bandwidth that sets the scale of 
connectivity for the data set. A Markov matrix Mij can be 
created from a proper normalization of the kernel matrix, 
and a spectral analysis of Mij will indicate whether the data 
support the existence of a lower-dimensional manifold, 
and if so, provide a representation of the data in this low-
dimensional space. 

The definition of the distance between data points, dij, 
is an important step in the DMap process. For our model 
system this step is nontrivial, as we must define the 
distance between two ‘snapshots’ comprising the xyz 
positions of three particles. We considered three different 
definitions of distance. The first was Hausdorff distance, 
which is a simple and general metric for the distance 
between sets of points in Euclidean space. Hausdorff 
distance has been used in past studies of particle clusters 
(Bevan et al., 2015); as in the previous work, here each 
configuration was mean-centered and aligned by its 
principal axes of rotation before analysis. The second 
distance definition was based on potential energy. 
Specifically, each configuration was assigned a numerical 
value F = exp[-u*]-1, and the distance between two 
configurations was defined as the difference between their 
respective F values. The third distance definition was 
based on the pairwise connectivity of the particles through 
a spectral graph matching algorithm called IsoRank (Long 
et al., 2014). Each configuration was represented by a 3x3 
matrix with binary entries describing the existence (or lack 
thereof) of a ‘bond’ between the ij particle pair, based on a 
threshold distance. The distance between two 
configurations was computed as a metric of the difference 
between the two matrices. We expect that our DMap 
results using the IsoRank distance should identify the four 
distinct states corresponding to the structural motifs shown 
in Fig. 1(a). 

Results 

Figure 2 shows the results from the neural network 
analysis. The first reduced variable is strongly correlated 
with the potential energy of the configuration, which is 
perhaps not surprising based on the training procedure. 
The second reduced variable is likely capturing the axial 
symmetry of the configurations. 
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Figure 2.  Results from the neural network 
analysis. (left) Data in the H space as shown by 
plotting all the xyz particle locations for each 
of the 5001 configurations in the set. (right) 
Data in the L space generated by the neural 

network. Both of the images are colored by u*.  

 Figure 3 shows the DMap results. Although the 
eigenvalue spectra in all cases suggest that at most two 
dimensions are needed to represent the system, the data are 
plotted in the coordinates of the top three eigenvectors for 
better contextual understanding. Figure 3(a) shows that 
first nontrivial eigenvector, n2, successfully segregates the 
configurations that have lower potential energy values 
(blue) from the ones with moderate (green) and high 
(yellow) values. However, this eigenvector does not 
discriminate between the moderate and high energy 
structures. The next nontrivial eigenvector, ν3, does not 
resolve the data any further and seems to be capturing only 
a symmetry effect. These results are consistent with the 
nature of the Hausdorff distance. Figure 3(b) indicates that 
only one dimension is needed to describe the data and that 
the corresponding eigenvector is strongly correlated with 
potential energy, which is perhaps not surprising since the 
distance was based directly on the potential energy 
function F. Figure 3(c) shows that employing the IsoRank 
distance metric indeed yields a result in which the data are 
separated into four distinct clusters, which we have 
verified as corresponding to the four structural motifs 
(three, two, one, or no pairwise bonds) shown in Fig. 1(a). 
Interestingly, the correlation of these structures with the 
potential energy values is much weaker than we originally 
anticipated. This can be seen more clearly in the 
parametric plot of Fig. 3(d), where the substantial overlap 
of u* values between neighboring structures is evident. 

Conclusions 

ML can play a valuable role in identifying the number 
and type of variables needed to describe the 
thermodynamics of small systems, as demonstrated here 
using large data sets of ‘snapshots’ from a Monte Carlo 
simulation of three interacting Lennard-Jones particles in a 

three-dimensional periodic box. A neural network that 
enforced the equality of potential energy in the high- and 
low-dimensional spaces reduced the dimensionality from 
nine to two. Diffusion maps also identified one- or two-
dimensional spaces, although the results differed based on 
the definition of distance between configurations. The next 
step in this work is to identify geometric properties of the 
system that correlate with the reduced-space variables 
identified by the ML methods. 

 
Figure 3. (a, b, c) The configuration data points 

embedded in the space of the top three eigenvectors from 
DMap analysis based on the following distance metrics: 
(a) Hausdorff, (b) energy function F, and (c) IsoRank. 

Coloring is by value of the potential energy. (d) IsoRank 
data parametrically plotted as potential energy value vs. 

second eigenvector value. 
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