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Abstract Overview 

Wastewater treatment is a complex process that is difficult to model and optimize. Operational data from 
the wastewater treatment plant Høvringen (HØRA) in Trondheim, Norway (a chemically enhanced 
primary treatment (CEPT) plant with coagulation, flocculation and particle separation by settling) has 
been used to train and test an artificial neural network (ANN) to predict the turbidity of the treated water 
given relevant input. Suspended solids (SS) content causes cloudiness of a fluid and can therefore be used 
to determine treatment efficiency through turbidity measurements. The main finding is that the ANN is 
able to learn how process input parameters influence the quality of the treated wastewater, and that 
combining machine learning with a technical understanding of the system provides valuable insight into 
operating wastewater treatment plants. Chemical dosage is currently determined by the inflow rate to the 
plant. However, it is known that flow pattern, reject flows and influent wastewater quality are important. 
The importance of these key factors were confirmed in the training process, which indicates that chemical 
dosage could be determined as a function of 1) SS concentration at the plant inlet, 2) the average hydraulic 
retention time (V/Q), 3) averaging the inflow parameters over a corresponding number of hours, and 4) 
whether or not the reject water pumps are on or off. Use of ANNs to design more advanced process control 
systems has the potential to increase chemical dosage precision and robustness of chemically enhanced 
primary treatment towards influent variations. This will be important for the degree of water purification 
and may lower the consumptions of chemical and thereby operational costs. 
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Introduction

The modelling of water treatment processes is 
challenging because of its complexity, nonlinearity, and 
numerous contributory variables. Furthermore, it is of 
importance since poor water treatment has negative impacts 
on society and the environment. The overall scope of this 
work was to investigate whether machine learning (ML) can 
contribute to optimized control and operation of wastewater 
plants. Due to their ability to learn complex functions from 
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data ML techniques are highly relevant for process 
industries such as water supply and treatment. For instance, 
the influences of various parameters on concentrations of 
faecal indicator organisms and other water quality 
parameters have been investigated using regression 
methods (Black et al., 2007; Juntunen et al., 2012) and 
ANNs (Singh et al., 2009).  Wastewater treatment plans are 
required to ensure a certain treatment efficiency. For CEPT 



  
 

 

plants, this key performance indicator is determined by 
comparing SS concentration at the in- and outlet of the plant 
or process step. In this project, operational data was used to 
train and evaluate the performance of an ANN predicting 
the turbidity of treated wastewater given relevant input data. 
The aim of the study was thereby to investigate if ANNs 
have potential for application in process control. 

Treatment Process at HØRA 

The HØRA plant is equipped with several sensors 
logging measurements every two minutes. The dataset used 
for training spans the period 04.01.2018-01.21.2019 and 
consists of roughly 214 000 points. 

Wastewater from a sewage and drainage system 
covering 95 km2 and roughly 150 000 inhabitants is 
pretreated by grit removal and screens before the CEPT 
process. The turbidity of the untreated water turbin [g/m3] is 
measured before the screen. If the capacity of the plant is 
exceeded, the excess water is discharged to the Trondheim 
fjord through three overflows, Qoverflow,1-3 [m3/h]. In the 
plant, the water flow QA-D [m3/h] is treated in four parallel 
lines where chemicals (polymers) PolA-D [L/h] are added to 
enhance coagulation and flocculation. The wastewater then 
proceeds through a three chambered flocculation step 
before entering the sedimentation step where particles are 
removed. The turbidity of the treated water turbout [g/m3] is 
measured and the water discharged. The solids proceed to 
sludge treatment, where additional water is removed, stored 
in tanks with level hdec and hflow [m] and fed back to the plant 
inlet by pumps pdc,1-2, pfw1-2, pdw,1-2. 

Training and evaluation 

Of the total dataset, 3% was separated and used as test 
data. The test data was kept in chronological order around a 
third into the total set, thereby spanning roughly nine days 
in July 2018. Similarly, 3% was used as validation data. 
These data points were randomly sampled from the entire 
dataset (excluding test data) and used by the model design 
phase to test different parameters and model options. After 
a grid search to determine hyperparameters, an ANN 
architecture of 100, 100 and 10 neurons and an L1 
regularization constant of 0.03 was chosen. Training was 
performed using the Adam optimizer, 32 epochs and a batch 
size of 128 and a mean square error loss. 

Initially, the measurements described in the above 
section were modelled directly. However, this resulted in a 
very poor prediction model subject to noisy and inaccurate 
estimates. A hypothesis was constructed based on 
knowledge of the system: The measured inputs at a specific 
time are not related to turbout at the same time – there is a 
certain residence time in the flocculation and sedimentation 
basins. Hence, a spearman correlation analysis was 
conducted to find the connection between turbout now and 
inputs measured n hours ago. Due to the discrete nature of 
the pump data these were omitted from the analysis. The 

results are shown in Figure 1 and the following conclusions 
were drawn. 1) The input which correlates most with turbout 
is turbin. Thus, the most important factor for how clean the 
treated water is, is how dirty it is when entering the plant. 
2) There is no clear correlation or pattern related to overflow 
measurements. This is natural due to the fact that overflow 
rarely happens. 3) Input measured between 0-8 hours ago 
has the highest correlation with the current turbidity out. 
This suggests that water is mixed well in the flocculation 
and sedimentation tanks: some water flows through quickly 
while some has a higher residence time of several hours. 4) 
There is a periodic oscillation in the correlation analysis of 
24 hours. This is related to the relatively stable domestic 
water use, which peaks in morning and afternoons and is 
easily detected in inflow measurements. 

 

 

Figure 1.  Correlation (scale to the right) between 
the plant inputs (y-axis) at a specific time and the 

turbidity out n hours (x-axis) later? 

The input to the ANN was therefore defined as the 
average over the last n hours rather than the current 
measurements. The final train, validation and test loss were 
assessed for values of n up to 24 hours. The train and 
validation loss were comparable for all values of n, 
indicating no overfitting. Furthermore, they were quite 
constant and low for n ≥ 8 hours, indicating that including a 
larger "memory" in the data does not result in a better 
prediction model. This also corresponds well with the 
correlation analysis. However, for test data, the final loss 
varied and there was no value for n which resulted in a lower 
or more consistent loss than others. Since the test data is 
chronologically picked from within the data set, it can be 
concluded that the inputs in this period do not closely 
resemble the inputs the network was trained on. Hence, the 
model performance on these data is quite random since it is 
attempting extrapolation, a known weakness of neural 
networks. In fact, the available dataset does not span an 
entire year, which would be necessary to capture the natural 
seasonal changes.  



  

 

The results of n = 8 hours are shown in Figure 2 for the 
entire dataset. The prediction model has good performance 
and is able to predict turbout fairy accurately. The 
performance is equally good on validation as training data. 
In Figure 2, the model also performs well on test data.  

Feature importance analysis 

Based on system knowledge, QA-D, PolA-D and turbin 
were considered essential information for estimating turbout. 
However, it was desirable to investigate the effect of the 
remaining inputs. For instance, there is feedback from the 
sludge treatment where water with a high concentration of 
dirt is extracted and fed back into the water treatment. To 
gain more insight into the individual importance of these 
inputs, new models with the same architecture were trained 
as described in the previous section. However, the features 
related to overflow and sludge treatment have 
systematically been removed to investigate which (if any) 
are essential for training a good prediction model for turbout. 
The results are shown in Figure 3. 

Figure 3. Feature importance analysis. Final training loss 
for ANN where none, overflow, level, pump status and all 

of the above are included as model inputs. 
Clearly, by omitting all of them the resulting model is 

much less accurate. Similarly, the train loss decreases when 
including overflow or level measurements as inputs but is 
still significantly higher than the baseline of including all 
available information. However, completely omitting 
overflow and level and only including pump status results 
in a train loss of the same magnitude as including all. Thus, 
it can be confirmed that the feedback from the sludge 
treatment greatly affects turbout. 

Conclusion 

This extended abstract has presented the training and 
evaluation process of using an ANN to estimate the outlet 
turbidity of HØRA to investigate if an ANN could be used 
predict outlet wastewater quality and thereby have potential 
for application in process control. The following 
conclusions have been drawn. 1) The variables identified by 
the ANN and which could predict the outlet turbidity were 
those expected from system knowledge. 2) There is a 
certain residence time in the tanks which must be accounted 
for in the prediction model to get accurate results. 
Correlation analysis indicate 0-8 hours. 3) The feedback 
from sludge treatment, run by pumps, affects the outlet 
turbidity to a large extent. In addition, the inlet turbidity is 
the input parameter with the highest correlation with outlet 
turbidity.  

Polymer is currently added based on the wastewater 
inflow to the plant. Given the above findings, we 
recommend investigating the effects of basing it on 1) the 
average inflow parameters the last ~8 hours, and 2) whether 
or not the reject water pumps are on or off, and/or 3) 
measured inlet turbidity in. 

These measures may result in a higher degree of water 
purification and/or a lowered consumption of polymer. 
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Figure 2. Predicted and actual turbout for entire dataset. The model performs equally well on train and validation 
data. Test data is picked chronologically from the middle of the data set. Here the performance varies as the 

training data does not span the same input space. 


