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Abstract

Fault severity assessment is a challenging task especially in the presence of system uncertainty. Methods

based on design of experiments can be leveraged for active Fault Detection and Isolation (FDI), but these

methods find optimal FDI tests around a neighborhood of an anticipated set of values for system uncer-

tainty and the fault(s) severity. To address this issue of locally optimal designs, Bayesian experimental

design is applied for active FDI with robust test designs. In this work, we present the formulation and

performance of Frequentist and Bayesian D- and Ds-optimal FDI designs in a 3-tank system.
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Introduction

Fault Detection and Isolation (FDI) has been stud-

ied extensively due to the implications of uncertainty

and system disturbance on the system state assessment

and the corresponding impact on system maintenance

cost. Active FDI approaches solve an optimal design

problem that improves the information extracted from

the FDI test. However, these approaches are often lo-

cal as they design FDI tests for a predetermined set of

fault scenarios at fixed uncertainty expectation. Palmer

et al. (2018) calculated optimal FDI tests for assess-

ing heat exchanger fouling severity using a function of

the Fisher Information Matrix as the objective for FDI

optimality. Their steady state FDI test designs were

shown to be functions of heat exchanger fouling sever-

ity, which imposes a requirement for good anticipation

of the fault severity or the execution of several parallel

tests. Bayesian optimal experimental design (BOED)

can overcome this issue by considering the entire range

(distribution) of anticipated uncertainty and fault sever-

ity. BOED can, thus, calculate a unique FDI design for
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all instantiations of uncertainty and fault severity. Suc-

cessful examples of BOED include that by Atkinson and

Bogacka (1997) for D- and Ds-optimal designs to deter-

mine the order of a chemical reaction with uncertain re-

action rate and the work by Huan and Marzouk (2013),

who used the prior to posterior Kullback-Leibler diver-

gence for parameter inference in a combustion kinetics

problem. This work explores several of these criteria for

BOED for FDI in the benchmark 3-tank system.

Mathematical Formulation

Bayesian Experimental Design

The Bayesian approach to experimental design is

based on Bayes’ theorem where the posterior expecta-

tion of parameters θ given a design d and observations

y, can be found from Eq. (1):

p(θ|y,d) =
p(y|θ,d)p(θ|d)

p(y|d)
, (1)

where p(θ|y,d) is the posterior density of the parame-

ters θ, p(θ|d) is the prior density of the parameters for

the design d, and p(y|θ,d) is the likelihood of the ob-

servation y. The denominator p(y|d) is the evidence for

any value of θ, p(y|d) =
∫
Θ

p(y|θ,d)p(θ|d) dθ. Lindley



(1972) suggested that the expected utility U(d) of Eq.

(2) can be used as the objective for experimental design:

U(d∗) = max
d∈D

∫
Y

∫
Θ

u(d,y,θ)p(θ|y,d)p(y|d) dθdy, (2)

where u(d,y,θ) is a utility function. Applying Bayes’

theorem to Eq. (2) the expected utility becomes a func-

tion of the observations y:

U(d∗) = max
d∈D

∫
Y

∫
Θ

u(d,y,θ)p(y|θ,d)p(θ) dθdy. (3)

The choice of utility function in Eq. (3) is decisive and

should reflect the information gain from a test at the de-

sign d. The Fisher Information of a system can be used

as a utility function and a connection to alphabetical

design criteria can be made.

Frequentist D- and Ds-optimal Designs

The Fisher Information Matrix (FIM) is a common

information metric, calculated through sensitivity anal-

ysis of the observations w.r.t. system parameters:

I(θ,d) =

Ny∑
r=1

Ny∑
s=1

QT
r σrsQs, (4)

with σrs the [r, s] element of the inverse of the variance-

covariance matrix, Ny the number of elements in the ob-

servation array y and Qr, Qs are the sensitivity matrices

of the r, s responses w.r.t. parameters θ (Franceschini

and Macchietto, 2008):

Qr =

[
∂yr(θ,d)

∂θi∂θj

]
, with i, j = 1, 2, ..., k,

where k is the number of the parameters. The D-

optimal experimental design in the Frequentist’s context

maximizes the logarithmic determinant of the FIM:

φF,DOpt(d
∗) = max

φ∈Φ
log det [I(θ,d)] .

If only a part of the parameter vector is of interest, we

can split the parameter vector such as θ = [θ1 θ2], with

θ1 the parameters of interest and θ2 the nuisance param-

eters. The Frequentist Ds-optimal experimental design

can, then, be found from Eq. (5):

φF,DsOpt(d
∗) = max

φ∈Φ
log

{
det[I(θ,d)]

det[I(θ2,d)]

}
. (5)

Bayesian D and Ds-optimal Designs

Bayesian Fisher Information is equal to the second

derivative of the logarithmic likelihood of the observa-

tions p(y|θ,d) w.r.t. the parameters θ (Berger, 1985):

I(θ,d) = −Eθ
[
∂2 log p(y|θ,d)

∂θ2

]
. (6)

Assuming the observations y follow a Gaussian distri-

bution model, Eq. (6) reduces to Eq. (4). Using the

logarithmic determinant of FIM as the utility in Eq. (3),

with Monte Carlo simulation for the estimation of the

integral yields the Bayesian D-optimal design criterion:

φB,DOpt(d
∗) = max

d∈D

1

nMC

nMC∑
i=1

log det
[
I(θ(i),d)

]
.

with θ(i) the ith draw from the prior p(θ) and nMC the

number of Monte Carlo samples. Similarly, the Bayesian

Ds-optimal design criterion can be derived using as util-

ity function the term in brackets in Eq. (5):

φB,DsOpt(d
∗) = max

d∈D

1

nMC

nMC∑
i=1

log

[
det[I(θ(i),d)]

det[I(θ
(i)
2 ,d)]

]
.

Comparison of Optimal Designs

The suitability of the different utility functions for

BOED are compared here in terms of the Hellinger dis-

tance, H. H is calculated with results from Monte Carlo

simulations that produce the distributions of each ob-

servation for all fault scenarios, nc. Then, the mean H
values for all the fault scenarios including the no-fault

case, from all observations are calculated as:

H =
1

C1

(nc−1)∑
i=1

nc∑
j=i+1

ny∑
l=1

H(Pi(yl) ‖ Pj(yl)),

C1 =
nc!

2! · (nc − 2)!
+ ny.

Results of 3-Tank System Case Study

We apply BOED with different utility functions in

a variation of the 3-tank system of Palmer and Bollas

(2019). In the updated system shown in Figure (1),

the FDI test design problem searches for the optimal

opening of the valves, u1 and u2, for FDI of two tank

holes, r1 and r2, and an actuator fault, a, in the 3-way

valve. We assume that the uncertain parameters, flow

coefficients c1−3, follow normal distributions, while the

fault parameters are uniform distributed from the no-

fault value to a maximum value that cannot be exceeded.

Figure 2 presents the contour plots of the solution

plane, U(d∗), for the entire design space D. BOED

finds the optimal solution in the whole parameter space

Θ in contradiction to Frequentist approach, which finds

different optimal designs for each set of different an-

ticipated values of θ. The calculated values of H in-



Table 1. Frequentist D- and Ds-optimal designs and the Hellinger distance for different values of the parameter

array, θ. The BOED used θ = [0.6, 0.002, 0.002, 1, 1, 0.8]

θ D −Opt Ds −Opt Hellinger Distance

[a, r1, r2, c1, c2, c3] u1 u2 u1 u2 D −Opt Ds −Opt
[1, 0, 0, 1, 1, 0.8] 0.2520 0.05 0.3622 0.05 0.84282 0.85793

[0.8, 0, 0, 1, 1, 0.8] 0.3071 0.05 0.4357 0.05 0.85167 0.86285

[1, 0.002, 0, 1, 1, 0.8] 0.1786 0.05 0.2520 0.05 0.82727 0.84282

[1, 0, 0.002, 1, 1, 0.8] 0.2888 0.05 0.3990 0.05 0.84891 0.86086

[0.8, 0.002, 0, 1, 1, 0.8] 0.2153 0.05 0.3071 0.05 0.83517 0.85167

Bayesian OED 0.2750 0.05 0.5000 0.05 0.84841 0.85917
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Figure 1. Modified 3-tank system for case study.

dicate that the Ds-optimal criterion results in a bet-

ter design for FDI than D-optimal, which is in agree-

ment with the literature. Moreover, BOED results in

greater H distances, even compared to the average H
distances of the Frequentist solution for D-optimality or

Ds-optimality. The results of Table 1 support the hy-

pothesis that BOED is a robust method for FDI, when

prior information for the faults is uniform-distributed.

(a) Bayesian D-Optimal (b) Bayesian Ds-Optimal

Figure 2. D- and Ds- optimality criteria performance.

Conclusions

Frequentist and Bayesian D- and Ds- optimal design

criteria were presented and applied for the purpose of ac-

tive FDI in a variation of the benchmark 3-tank system.

The FDI designs were compared in terms of Hellinger

distance of the sensed outputs for each fault scenario.

The Bayesian Ds-optimality criterion was shown to be

superior in terms of detection and isolation of the faults

using output measurements in which the evidence of sys-

tem uncertainty is significant. Current work focuses on

the use of Shannon Entropy as a less computationally

intensive criterion for FDI test design.
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