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Abstract Overview 
Energy markets are ubiquitous across the globe and offer significant revenue opportunities for emerging technologies 
including energy storage and flexible energy-intensive industrial consumers. Effectively exploiting these opportunities 
requires reliable and accuracy short-term forecasts. Both classical time-series analysis and machine learning techniques such 
as ARIMA, GARCH, neural networks, nearest neighbors, and hybrid learning have been applied to energy price forecasting 
with mixed success. In contrast, in this work, we quantify the ability of the emerging Dynamic Mode Decomposition (DMD) 
techniques to learn nonlinear dynamics that drive spatiotemporal price fluctuations and make predictions for optimal control 
formulations. We find that standard DMD is unable to reliably extract low-rank structures from California whole energy 
market data. This is due to a well-known limitation of singular value decomposition techniques to efficiently compress 
invariances in datasets. We then show that Augmented DMD (ADMD) overcomes this limitation, giving fast and accurate 
day-ahead market energy price forecasts. Preliminary benchmarks show that ADMD requires less tuning, less training data 
and less computational time than alternative forecasting techniques. 
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Introduction
The California Independent System Operator (CAISO) runs 
wholesale electricity markets that service over 39 million 
California residents, businesses, and industries. The total 
usage of electric energy in the CAISO in 2015 amounted to 
the usage of 261,000 GWh for a staggering 40 billion 
dollars in electric energy sales. With such a vast, complex 
market comes economic opportunity for energy buyers and 
sellers. Time variant prices in the CAISO present a basic 
desire to employ "buy low, sell high" trading strategies in 
order to either minimize energy costs or maximize profit 
from energy sales. Using historical market data and signals, 
we have previous analyzed optimal market participation 
strategies for several energy conversation and storage 
technologies including combined heat and power (CHP) 
generators, concentrated solar thermal (CSP) generations 
with thermal storage, grid-scale batteries, and energy 
intensive industry systems. (Dowling et al, 2017, 2018; 
Sorourifar et al, 2018) For each of these technologies, we 
consistently found systematic multi-timescale multi-
product market participation can boost revenues from 
between 1.5 to 10 times. These and many other 
technoeconomic analyses assume perfect information of 
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future energy prices, which means the results are an upper 
bound on achievable revenue. 
 
Calculating realistic expected revenues requires accurate 
forecasts of energy prices. Classical time-series analysis 
models such as (Seasonal) Autoregressive (Integrated) 
Moving Average, i.e., (S)AR(I)MA, and Generalized 
Autoregressive Conditional Heteroskedasticity, i.e., 
GARCH, have been employed with varying success to 
energy price forecasting. Recently, machine learning 
techniques as neural networks, nearest neighbors, and 
hybrid learning have also been considered for energy price 
forecasting. All of these methods seek to discovery and 
exploit statistical trends to make forecasts. In this work, we 
instead explore the ability of emerging Dynamic Mode 
Decomposition (DMD) techniques to learn nonlinear 
dynamics that drive spatiotemporal price fluctuations and 
make predictions for optimal control formulations. 



  
 
Dynamic Mode Decomposition 

DMD is a so-called equation free dimensionality 
reduction technique that has been used to extract complex, 
nonlinear, periodic behavior from computational fluid 
dynamic simulations and other spatiotemporal datasets. 
(Kutz et al, 2016) These learned dynamics are typically 
used for diagnostics, short-term predictions, and/or control. 
Recently, DMD has been successfully analyze and forecast 
stock market data, resulting in new economic insights and 
high-performance trading algorithms. (Cui & Long, 2016; 
Mann & Kutz, 2016; Hua et al, 2016) In this paper, we 
explore the ability of DMD to extract spatiotemporal trends 
and forecast in CAISO day-ahead wholesale electricity 
markets. 

 
We now highlight the key mathematical properties of 

DMD in the context of energy market forecasting using the 
notation from Kutz et al (2016). DMD starts with an input 
matrix 𝑋" ∈ ℝ%	×( where each row corresponds to a spatial 
feature (nodes/locations in an energy market) and each 
column is a discrete timestep. 
 
 
 
This matrix is partitioned into two additional matrices: 
 
 
 

  
The overall goal of DMD is to produce a best fit linear 
operator 𝐴 ∈	ℝ%	×(  which advances the energy price 
dynamics by one hour (timestep): 
 
   

 
Thus 𝐴 is a finite dimensional approximation to the infinite 
dimensional Koopman operator. A key property of the 
Koopman operator is that it can map any nonlinear state 
function exactly.  The DMD result can be interpreted as the 
best fit finite dimensional linear system that mimics the 
infinite dimension Koopman operator. It is important to 
highlight that DMD is not built from a local linearization. 
We can compute a low-rank linear operator via singular 
value decomposition (SVD): 
 
  

 
Retaining the 𝑟 most dominant singular values and vectors 
compresses the data matrix: 
 
 
 
The low-rank operator 𝐴+ is obtained via projection with 𝑈-: 
 
 
 
This allows us to avoid directly computing 𝑨, which can be 
high-dimensional (e.g., millions by millions for CFD 
simulations). Because 𝐴+  is a linear operator, the price 

trajectories can be calculated analytically using an 
eigendecomposition: 
 
 
 
where 𝚽 are the so-called DMD modes which arise from 
the eigenvectors of 𝐴+ and encode spatial patterns. Likewise, 
𝑫(𝒕) are the temporal modes, arise from the eigenvalues, 
and encode temporal patterns. Thus, DMD give us an 
analytic prediction for any continuous time, making it well 
suited for computationally fast forecasting. 

Results 
We performed systematic analysis of DMD applied to 
hourly timesteps (8760 in total) for 6587 nodes in CAISO 
for calendar year 2015. In particular, we explore the 
following questions: 
 

1. How does the choice of SVD truncation level 𝑟 
impact reconstruction error? 
 

2. How does the window size 𝑚  and 𝑛  impact 
reconstruction error? 

 
3. Do the best 𝑟 , 𝑚  and 𝑛  recommendations for 

reconstruction translate to low forecasting error?  
 
Due to space limitations, we only summarize the key 
results. We find that truncation error is highly sensitive to 
the choice in 𝑟, which can change dramatically for each 
training dataset. We also find that DMD performs best using 
all nodes (largest 𝑚) and the trainset dataset should include 
at least as many hours as you wish to forecast. We also find 
that the optimal truncation level 𝑟 for reconstruction is near 
optimal for forecasting. Overall, we found median (mean 
squared) forecasting error of 16%. This mediocre 
performance is explained by the fact that DMD often failed 
to extract low-rank structures in the energy price dataset. 
 
Further investigation revealed the poor performance of 
“vanilla” DMD is due to the well-known “standing wave” 
problem; in other words, SVD methods such as DMD and 
Principle Component Analysis (PCA) are unable to handle 
invariances in the data. To overcome this limitation, we 
consider Augmented DMD (ADMD), which simply 
involves stacking time-shifted copies of the data to form a 
larger, augmented data matrix. Figure 1 compares DMD 
and ADMD, highlighting the improved performance. 
Overall, ADMD results is approximately 10% forecasting 
error. Surprisingly, we find ADMD performs nearly as well 
considering either only one node or multiple nodes together. 

𝑋" = 	[𝑥9	𝑥: …𝑥(]																																																															(1) 

𝑋 = 	[𝑥9	𝑥: …𝑥(>9]																																																															(2) 
𝑋@ = 	[𝑥:	𝑥: …𝑥(]																																																																		(3) 

𝑋@ ≈ 	𝐴	𝑋																																																																																	(4) 

𝑋 = 𝑈	Σ	𝑉∗																																																																														(5) 

𝑨H = 𝑈-∗	A	𝑈- = 𝑈-∗	𝑋@	𝑉-	ΣJ>9																																																(7) 

𝑋 ≈ 𝑈-	ΣJ	𝑉-∗																																																																											(6) 

𝑥(𝑡) = Φ		𝐷(𝑡)	𝑏																																																																					(8) 



  
This suggests ADMD is not apply to identify meaningful 
spatial patterns to improve forecasting. 
 
 

 
Figure 1. Comparison of DMD (blue) and Augmented 
DMD (black) forecasts. 
 
We the compare DMD, ADMD, and backcasting 
forecasting in a rolling horizon optimal control framework 
for a generalized energy storage system. We consider all 
6587 nodes for all hours in calendar year 2015. We find 
these methods capture 80 to 84% of the maximum 
achievable revenue (calculated with perfect information). 
The geography distribution of revenues are shown in Fig. 2. 
 

 
Figure 2. Comparison of market revenue realized from 
optimal control of an energy storage system with perfect 
information, backcasting, DMD, and Augmented DMD 
forecasts. 

Conclusions 

We present one of the first published applications of 
DMD to extract spatiotemporal dynamics in wholesale 
energy markets. We find, somewhat surprisingly, the 
success of DMD in stock markets does not directly translate 
to energy markets. Standard DMD is unable to identify low-
rank dynamics and gives mediocre electricity price 
forecasts. Augmented DMD overcomes these limitations 
and achieves much more accurate forecasts. However, 
additional spatial information does not significantly 
improve forecasting accuracy, suggesting spatial dynamics 
are less importance than temporal dynamics. Although 
DMD does not immediately offer new economic insights, it 
is a promising forecasting tool. Augmented DMD is robust 
to SVD truncation level choice, meaning it requires less 
tuning that ARIMA and other classically time-series 

approaches. Likewise, ADMD works well with only few of 
data, which is orders of magnitude less than machine 
learning techniques. Finally, DMD and ADMD gives 
analytic forecasts, which are much faster than classical 
time-series analysis and machine learning approaches in our 
comparative benchmarks. As future work, we plan to 
explore multiresolution DMD and other extensions to 
further improve forecasting accuracy.	
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