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Abstract Overview 

Dual control maintains an optimal balance between control actions (exploitation) and probing actions 
(exploration), leading to improved process performance by actively reducing system uncertainty. The 
optimal solution of dual control problem can be found by stochastic dynamic programming but it is 
computationally intractable in most practical cases. In this study, a tailored approximate dynamic 
programming (ADP) method can be used.  This paper addresses the dual control problem of a 
nonstationary batch process maximizing a given end objective while satisfying path constraints in the 
presence of stochastic system uncertainty. Performance of the ADP-based approach is tested on a fed-
batch penicillin fermentation system with two uncertain parameters. 
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Introduction

The control of dynamic systems in the presence of 
uncertain parameters and constraints is of great interest in 
industrial chemical and biological processes. When 
measurements available, the general approach is to estimate 
the unknown parameters with measurements and use the 
parameter estimates in a deterministic control framework, 
known as certainty equivalence adaptive control. To obtain 
informative data about uncertainties, exploratory inputs to 
excite the system, i.e., probing inputs, are usually required. 
However, the certainty equivalence approach does not take 
into account the effect of inputs on the future uncertainty 
and thus the resulting probing actions are only passive or 
accidental (Mesbah, 2018). 

The probing inputs may decrease the performance in 
short-term (when it conflicts with the control objective), but 
the improved knowledge about uncertainty can result in 
better control performance in the future. Thus, an optimal 
balancing between maximizing the information about the 
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uncertain system and optimizing the process performance is 
needed, and this is called the dual control problem.  

The optimal solution of the dual control problem can 
be found by stochastic dynamic programming (Feldbaum, 
1960) but it is computationally intractable in most practical 
cases, particularly for systems with continuous state space. 
To solve the dual control problem approximately, various 
approaches have been suggested. One such approach is via 
approximate dynamic programming (ADP), also known as 
reinforcement learning. For the purpose of process control 
application with continuous state and action spaces, Lee and 
Lee (2009) proposed an ADP based approach for stochastic 
optimal control, in which dynamic programming is solved 
on a restricted space of hyper-state sampled through 
stochastic closed-loop simulations performed with 
suboptimal control policies. The proposed approach was 
applied to tracking control of ARX SISO linear system with 

  
   

                                                           



  
 
two uncertain parameters and  improved performance with 
dual feature was demonstrated..  

This study aims to tailor the ADP method for the dual 
control of nonlinear and nonstationary batch processes. A 
batch process has a relatively short time horizon compared 
to a continuous process, so in the presence of uncertain 
parameters with poor prior knowledge, it is necessary to 
rapidly find good estimates before reaching the end of the 
batch. In this study, rather than tracing given trajectories, 
the ADP-based dual control problem is formulated to 
optimize the batch process’s economic performance while 
meeting path constraints under uncertainty. A case study of 
fed-batch penicillin fermentation with two uncertain 
parameters is used to show improved performance of the 
ADP-based dual controller. 

ADP-based Dual Adaptive Control 

Consider the discrete-time stochastic system  
𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘,𝜃𝜃𝑘𝑘, 𝑒𝑒𝑘𝑘),     𝑘𝑘 ∈ ℕ   (1) 
where 𝑥𝑥𝑘𝑘  is a state vector, 𝑢𝑢𝑘𝑘  is a control input, 𝜃𝜃𝑘𝑘  is a 
vector of unknown parameters of the model, and 𝑒𝑒𝑘𝑘 
represents exogenous noises. The state 𝑥𝑥𝑘𝑘 is assumed to be 
measured and the model structure 𝑓𝑓 is assumed to be known. 
The aim of control is to maximize the performance index 
represented as follow: 

max
𝑢𝑢0,⋯,𝑢𝑢𝑡𝑡𝑓𝑓−1

𝐸𝐸 �∑ 𝜙𝜙(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡) + 𝜙𝜙�𝑇𝑇(𝑥𝑥𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓−1
𝑡𝑡=0 �  (2) 

subject to 
𝑔𝑔𝑖𝑖(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡) ≤ 0,     for 𝑖𝑖 = 1,⋯ ,𝑚𝑚   (3) 
where 𝜙𝜙 and 𝜙𝜙�𝑇𝑇 are stage-wise reward (profit) and terminal 
reward (profit), respectively. The expectation 𝐸𝐸  is taken 
over the distribution of 𝜃𝜃  and 𝑒𝑒 . 𝑔𝑔𝑖𝑖  denotes the path 
constraints which should be satisfied.  The inputs are to be 
decided based on the measured state information, and so the 
problem is to find the optimal control policy, which is a map 
between state 𝑥𝑥𝑘𝑘 and input 𝑢𝑢𝑘𝑘. 

In the framework of dynamic programming, the 
optimal ‘profit-to-go’ function at time k can be represented 
as   

𝐽𝐽𝑘𝑘∗(𝜉𝜉𝑘𝑘) = max
𝒖𝒖

𝐸𝐸 �∑ 𝜙𝜙(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡) + 𝜙𝜙�𝑇𝑇 �𝑥𝑥𝑡𝑡𝑓𝑓� |𝑡𝑡𝑓𝑓−1
𝑡𝑡=𝑘𝑘 𝜉𝜉𝑘𝑘�, (4) 

where hyper-state 𝜉𝜉𝑘𝑘 is an extended random state including 
the information about uncertainty, i.e., parameter estimates 
and their variances, as well as 𝑥𝑥𝑘𝑘. 𝐽𝐽𝑘𝑘∗ maps the hyper-state to 
the profit-to-go value under the optimal control, satisfying 
the following Bellman’s optimality equation: 
𝐽𝐽𝑘𝑘∗(𝜉𝜉𝑘𝑘) = max

𝑢𝑢𝑘𝑘
𝐸𝐸[𝜙𝜙(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝐽𝐽𝑘𝑘+1∗ (𝜉𝜉𝑘𝑘+1)|𝜉𝜉𝑘𝑘]. (5) 

Once 𝐽𝐽𝑘𝑘∗  is determined, the optimal control policy can be 
derived by solving 
𝑢𝑢𝑘𝑘 = 𝜋𝜋∗(𝜉𝜉𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎max

𝑢𝑢𝑘𝑘
𝐸𝐸[𝜙𝜙(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝐽𝐽𝑘𝑘+1∗ (𝜉𝜉𝑘𝑘+1)|𝜉𝜉𝑘𝑘]. (6) 

For each evaluation of a candidate 𝑢𝑢𝑘𝑘, the expectation 
needs to be calculated, which involves the integration of the 
successor hyper-state 𝜉𝜉𝑘𝑘+1  for its all possible range. To 

solve the Bellman equation numerically, the value iteration 
or policy iteration is performed after discretization of the 
hyper-state space. However, this is computationally 
intractable in most practical cases, especially when the 
hyper-state space is continuous. 

The ADP based approach proposed by Lee and Lee 
(2009) circumvents the curse-of-dimensionality of the 
traditional DP approach by solving the DP only for a 
restricted space of the hyper-state, sampled from Monte 
Carlo simulations of the closed-loop system with given 
suboptimal control policies. The same idea is employed in 
this study and tailored for the nonstationary batch process 
with path constraints. Construction and improvement of the 
profit-to-go approximation proceed as follows and note that 
these steps are performed off-line and the converged profit-
to-go approximator is used on-line. 
1. Perform Monte-Carlo runs of the closed-loop system 

with known suboptimal control policies, e.g., PID, MPC. 
It is recommended to simulate several policies with 
different characteristics in order to cover a broad range 
of potential operating space. 

2. For each state visited during the simulation runs, 
calculate the profit-to-go 𝐽𝐽𝑘𝑘0  using the simulation data 
according to 

𝐽𝐽𝑘𝑘0(𝜉𝜉𝑘𝑘) = ∑ 𝜙𝜙(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡) + 𝜙𝜙�𝑇𝑇(𝑥𝑥𝑡𝑡𝑓𝑓)|𝜉𝜉𝑘𝑘
𝑡𝑡𝑓𝑓−1
𝑡𝑡=𝑘𝑘 .  (7) 

Here the satisfaction of path constraint is considered as 
the stage-wise reward: 
𝜙𝜙�𝑥𝑥𝑘𝑘,  𝑢𝑢𝑘𝑘� ⟸ 𝜙𝜙�𝑥𝑥𝑘𝑘,  𝑢𝑢𝑘𝑘� − λ ∙ ∑ 𝑔𝑔𝑖𝑖(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘)𝑖𝑖∈𝐺𝐺𝑐𝑐𝑐𝑐 . (8) 
𝐺𝐺𝑐𝑐𝑐𝑐  is a set of indexes of constraints violated. λ  is a 
weighting parameter for the penalty for constraint 
violation. 

3. Construct an initial function approximator 𝐽𝐽  using 
calculated profit-to-go values for the sampled points to 
approximate the profit-to-go with respect to the 
continuous hyper-state. In this work, a local averager, 
i.e., a modified k-nearest neighbor (kNN), suggested in 
(Lee et al., 2006) is used as the approximator. 
Considering the nonstationary, finite-time  
characteristics of the batch process, the value function 
approximation is performed for each time step k as 
below: 
𝐽𝐽𝑘𝑘�𝜉𝜉𝑘𝑘,0� = ∑ 𝑤𝑤𝑖𝑖𝐽𝐽𝑘𝑘�𝜉𝜉𝑘𝑘,𝑖𝑖�𝑁𝑁

𝑖𝑖=1    (9) 
with 

𝑤𝑤𝑖𝑖 = 1 𝑑𝑑𝑖𝑖⁄
∑ 1 𝑑𝑑𝑖𝑖⁄𝑁𝑁

,     (10) 

where 𝜉𝜉𝑘𝑘,0 is a query point at time k, and N is the number 
of neighboring points in the data set. Each neighboring 
point is weighted inversely proportional to the 
Euclidean distance. To avoid excessive extrapolation, a 
quadratic penalty term based on the local density is 
added. 
𝐽𝐽𝑘𝑘�𝜉𝜉𝑘𝑘,0� ⇐ 𝐽𝐽𝑘𝑘�𝜉𝜉𝑘𝑘,0� − 𝐽𝐽𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜉𝜉𝑘𝑘,0�,  (11) 



  

𝐽𝐽𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜉𝜉𝑘𝑘,0� = 𝐴𝐴𝑘𝑘 ∙ 𝐻𝐻 � 1
𝑓𝑓Ω�𝜉𝜉𝑘𝑘,0�

− 𝜌𝜌� ∙ �
1

𝑓𝑓Ω�𝜉𝜉𝑘𝑘,0�
−𝜌𝜌

𝜌𝜌
�

2

. (12) 

Detailed description of the penalty term can be found in 
(Lee et al., 2006). Note that in this study the penalty term 
is set as 𝐽𝐽𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐽𝐽𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚  whenever 𝐽𝐽𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜉𝜉𝑘𝑘,0� ≥
𝐽𝐽𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐽𝐽𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 to bound the profit-to-go in the iteration 
steps.  

4. Improve the profit-to-go approximation through value 
iteration 
𝐽𝐽𝑘𝑘𝑖𝑖+1(𝜉𝜉𝑘𝑘) = max

𝑢𝑢𝑘𝑘
𝐸𝐸�𝜙𝜙(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝐽𝐽𝑘𝑘+1𝑖𝑖 (𝜉𝜉𝑘𝑘+1)|𝜉𝜉𝑘𝑘�, (13) 

where superscript i denotes ith iteration step and 𝐽𝐽𝑘𝑘𝑖𝑖+1 is 
calculated for all the sampled states 𝜉𝜉𝑘𝑘 from simulations. 
To evaluate the expectation, Monte Carlo simulation is 
performed and the average of data ensemble is used. The 
control input space is discretized and the expectation is 
evaluated for each candidate input. The iteration is 
repeated until �𝐽𝐽𝑘𝑘𝑖𝑖+1(𝜉𝜉) − 𝐽𝐽𝑘𝑘𝑖𝑖 (𝜉𝜉)�

∞
 becomes negligibly 

small for all k. 
Once the profit-to-go values converge, it can be used 

on-line as a control policy by solving 
𝑢𝑢𝑘𝑘 = 𝜋𝜋∗(𝜉𝜉𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎max

𝑢𝑢𝑘𝑘
𝐸𝐸�𝜙𝜙(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝐽𝐽𝑘𝑘+1

𝑁𝑁𝑐𝑐 (𝜉𝜉𝑘𝑘+1)|𝜉𝜉𝑘𝑘�(14) 

at each sampling time. This single-stage optimization 
requires much less on-line computation than the original 
multi-stage optimization problem.  

Case Study: Fed-batch Penicillin Fermentation 

We illustrate the ADP-based dual control of the batch 
process with an example of penicillin fermentation process. 
The system can be described by 
𝑥𝑥𝑘𝑘 = 𝑓𝑓𝑘𝑘�𝜃𝜃𝑘𝑘,  𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1� + 𝑒𝑒𝑘𝑘,     𝑒𝑒𝑘𝑘~𝑁𝑁(0,𝑅𝑅𝑒𝑒) (15) 
𝑦𝑦𝑘𝑘 = ℎ𝑘𝑘(𝑥𝑥𝑘𝑘) + 𝑣𝑣𝑘𝑘,     𝑣𝑣𝑘𝑘~𝑁𝑁(0,𝑅𝑅𝑣𝑣)   (16) 
𝜃𝜃𝑘𝑘 = 𝜃𝜃𝑘𝑘−1 + 𝑤𝑤𝑘𝑘,     𝑤𝑤𝑘𝑘~𝑁𝑁(0,𝑅𝑅𝑤𝑤)   (17) 
where 𝑒𝑒𝑘𝑘 is exogenous noises and 𝜃𝜃𝑘𝑘 is a set of uncertain 
parameters. The system model 𝑓𝑓𝑘𝑘  is represented by the 
following nonlinear differential equations (Srinivasan et al., 
2002): 
𝑋̇𝑋 = 𝜇𝜇(𝑆𝑆)𝑋𝑋 − 𝑢𝑢

𝑉𝑉
𝑋𝑋,    (17) 

𝑆̇𝑆 = −𝜇𝜇(𝑆𝑆)𝑋𝑋
𝑌𝑌𝑥𝑥

− 𝑣𝑣𝑣𝑣
𝑌𝑌𝑝𝑝

+ 𝑢𝑢
𝑉𝑉

(𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑆𝑆),   (18) 

𝑃̇𝑃 = 𝑣𝑣𝑣𝑣 − 𝑢𝑢
𝑉𝑉
𝑃𝑃,     (19) 

𝑉̇𝑉 = 𝑢𝑢,      (20) 
where 𝜇𝜇(𝑆𝑆) = 𝜇𝜇𝑚𝑚𝑆𝑆 (𝐾𝐾𝑚𝑚 + 𝑆𝑆 + 𝑆𝑆2 𝐾𝐾𝑖𝑖⁄ )⁄ . 𝑋𝑋, 𝑆𝑆 and 𝑃𝑃 are the 
concentrations of biomass, substrate and penicillin, 
respectively, and 𝑉𝑉 is the liquid volume. The control input 
𝑢𝑢 is the feeding rate of substrate. Since the major sources of 
uncertainty in bioprocess are feedstock variability and cell 
variability, the inlet sugar concentration 𝑆𝑆𝑖𝑖𝑖𝑖~𝑁𝑁(200, 252) 
and the maximum growth rate 𝜇𝜇𝑚𝑚~�0.01,  0.03�  are 
assumed to be uncertain but constant during the whole batch 
in this study. For the sake of simplicity, the perfect 

measurement of the physical states is assumed (𝑅𝑅𝑣𝑣 = 0) 
and thus 𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 = [𝑋𝑋𝑘𝑘 𝑆𝑆𝑘𝑘 𝑃𝑃𝑘𝑘 𝑉𝑉𝑘𝑘]𝑇𝑇 and 𝜃𝜃𝑘𝑘 = �𝜇𝜇𝑚𝑚,𝑘𝑘 𝑆𝑆𝑖𝑖𝑖𝑖,𝑘𝑘�

𝑇𝑇
.  

In this study, the extended Kalman filter is employed to 
estimate 𝜃𝜃𝑘𝑘  from the measurements. We set the initial 
covariance matrix 𝑃𝑃0 as diag{0.012, 252}, 𝑅𝑅𝑒𝑒 as 0.042𝐼𝐼4×4, 
and 𝑅𝑅𝑤𝑤 as diag{0, 0}. The hyper-state of the process is 𝜉𝜉𝑘𝑘 =

�𝑋𝑋𝑘𝑘 , 𝑆𝑆𝑘𝑘 , 𝑃𝑃𝑘𝑘 ,𝑉𝑉𝑘𝑘 , 𝑌̂𝑌𝑥𝑥𝑘𝑘+1|𝑘𝑘 , 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘+1|𝑘𝑘 , 𝑃𝑃11𝑘𝑘+1|𝑘𝑘 ,𝑃𝑃22𝑘𝑘+1|𝑘𝑘 , 𝑃𝑃12𝑘𝑘+1|𝑘𝑘�
𝑇𝑇
. 

The control goal is to maximize 𝑃𝑃 at the fixed final 
time 𝑡𝑡𝑓𝑓 = 150 h under the uncertainties while satisfying an 
upper bound constraint on 𝑋𝑋, i.e.,  𝑋𝑋 ≤ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 3.7 𝑔𝑔/𝐿𝐿. 
The control input 𝑢𝑢𝑘𝑘 is bounded in [0, 1]. Thus, the profit-
to-go values for the sampled points at each time step k can 
be calculated as follows: 

𝐽𝐽𝑘𝑘0(𝜉𝜉𝑘𝑘) = ∑ 𝜙𝜙�𝑥𝑥𝑖𝑖 ,  𝑢𝑢𝑖𝑖� + 𝑃𝑃|𝑡𝑡𝑓𝑓
𝑡𝑡𝑓𝑓−1
𝑖𝑖=𝑘𝑘 ,   (21) 

𝜙𝜙�𝑥𝑥𝑖𝑖 ,  𝑢𝑢𝑖𝑖� = �𝜆𝜆
(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑖𝑖)    𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖 > 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
       0                𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

.  (22) 

For the data generation, the stochastic closed-loop 
simulations are performed with the suboptimal policies, i.e., 
a shrinking-horizon adaptive MPC with/without dithered 
inputs. The dithered inputs are uniformly sampled from 
[−0.02, 0.02]  and 50 runs of simulations with each 
suboptimal policy are conducted. With the sampled data, 
the value function approximator is constructed and the 
value iteration is performed to improve the approximation. 

The performances of the certainty equivalence control, 
i.e., adaptive MPC, and the ADP-based dual control will be 
compared further.  

Conclusion 

This study proposes a dual control scheme for batch 
process based on approximate dynamic programming. The 
control policy from the proposed ADP-based dual control is 
expected to improve the batch performances compared to 
the passive adaptive control policy by actively reducing the 
parameter uncertainty within a given batch time.  
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