
Data-Driven Process Control via Reinforcement Learning and
Recurrent Neural Networks

Nathan P. Lawrence1, Philip D. Loewen1, Gregory E. Stewart2, and R. Bhushan Gopaluni∗3

1Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.
2Honeywell, North Vancouver, BC V7J 3S4, Canada.

3Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

Abstract Overview

Model-based controllers are ubiquitous in process control. In order to maintain overall performance in the pres-
ence of gradual changes in the process (for example due to changes in feedstock, wear and tear on equipment and
instrumentation, etc), such controllers require re-tuning. For Model Predictive Control (MPC), or other modern
approaches where performance is directly correlated with the quality of the underlying process model, re-tuning
the controller requires re-identifying the model, and this can take up to two weeks for some applications (Kano and
Ogawa, 2009). Our recent results in (Spielberg et al., 2017) and (Spielberg et al., 2019) use Deep Reinforcement
Learning (DRL) to develop an input-output controller for set-point tracking problems in discrete-time nonlinear
processes by simply using the current output information from the system. Here, we propose a general RL state
definition to include past inputs and outputs, and accompanying Recurrent Neural Network (RNN) structures to
parameterize the actor and critic. Further, we propose a new reward function that involves both the current devia-
tion from a set-point and the difference in control actions across several previous time-steps, thereby incentivizing
smoother controls.

Keywords
Process control, Deep reinforcement learning, Actor-critic networks

Introduction

The first successful implementations of RL methods in
process control utilized approximate dynamic programming
(ADP) methods for optimal control of discrete-time nonlin-
ear systems (Lee and Lee, 2006; Lee et al., 2006; Kaisare
et al., 2003; Lee and Lee, 2004, 2005). While these results
illustrate the applicability of RL in controlling discrete-time
nonlinear processes, they are also limited to processes for
which at least a partial model is available or can be derived
through system identification (Lee and Lee, 2006; Lee et al.,
2006; Kaisare et al., 2003; Lee and Lee, 2004).

Recently, several data-based approaches have been pro-
posed to address the limitations of model-based RL in con-
trol. In (Lee and Lee, 2005; Mu et al., 2017), a data-based
learning algorithm was proposed to derive an improved con-
trol policy for discrete-time nonlinear systems using ADP
with an identified process model. Similarly, (Lee and Lee,
2005) proposed a Q-learning algorithm to learn an improved
control policy in a model-free manner using only input-
output data. While these methods remove the requirement
for having an exact model, they still present several issues.
For example, the learning method proposed in (Lee and Lee,
2005; Mu et al., 2017) is still based on ADP, so its perfor-
mance relies on the accuracy of the identified model.

In our preliminary work (Spielberg et al., 2017), we
use Deep Reinforcement Learning and an actor-critic archi-

∗Corresponding author: bhushan.gopaluni@ubc.ca

tecture to develop a model-free, input-output controller for
set-point tracking problems in discrete-time nonlinear pro-
cesses. However, we define the RL state1 for a process to
be

st = 〈yt, yt,sp − yt〉, (1)

where yt is the system output at time t and yt,sp is the re-
spective set-point. We propose a more general RL state def-
inition that includes past input and output values, thereby
better representing the system dynamics. Recall that Recur-
rent Neural Networks are specialized neural networks for
processing sequential data of arbitrary length (Goodfellow
et al., 2016). Therefore, in order to capture the temporal de-
pendencies within the RL state, we adapt the architecture in
(Spielberg et al., 2017) to use RNN’s for both the actor and
the critic. We assume the setting is a Markov Decision Pro-
cess with action and state spacesA and S, respectively, and
state transition distribution p satisfying the Markov property

p(st+1|St = st, At = ut, . . . , S1 = s1, A1 = u1) (2)
= p(st+1|St = st, At = ut),

(3)

where st ∈ S and ut ∈ A.

1The notion of state in Reinforcement Learning differs from that in
control, such as in a state-space model

Actor-Critic Framework

We outline the DRL controller with the deterministic
actor-critic method. Further details and the precise algo-
rithm can be found in (Spielberg et al., 2019). The actor
network defines the agent’s (deterministic) policy, while the
critic network evaluates the policy proposed by the actor.
More precisely, the actor-critic method is a combination of
policy gradient methods andQ-learning via temporal differ-
ence (TD) update (Sutton et al., 2000; Degris et al., 2012;
Bhatnagar et al., 2008). Our intended applications in pro-
cess control have continuous state and action spaces. Thus,
we consider a parameterized deterministic policy for the ac-
tor, µ(·,Wa) : S → A such that

ut =µ(st,Wa), (4)

where Wa refers to a collection of parameters that we will
iteratively update using batch gradient ascent so as to max-
imize the expected reward

J(µ(·,Wa)) =Eh∼pµ(·)
[∞∑
t=1

γk−1r(st, µ(st,Wa))

∣∣∣∣s0]
(5)

where s0 ∈ S is a starting state, 0 < γ < 1 is a discount fac-
tor, and r denotes the reward signal obtained from a state-
action pair.

To perform this update, we use the policy gradient theo-
rem for deterministic policies (Silver et al., 2014) to approx-
imate the gradient of J in terms of the critic, Qµ(·, ·,Wc),
as follows:

∇̂WaJ(µ(·,Wa)) = (6)

Est∼ρβγ (·)
[
∇aQµ(st, a,Wc)|a=µ(st,Wa)∇Waµ(st,Wa)

]
,

where ρβγ (s) =
∑∞
n=0 γ

tp(st = s|s0, µ) is a discounted
state visitation distribution. We note that Eq. (6) is max-
imized only when the policy parameters Wa are optimal,
which then leads to the update scheme

Wt+1 ←Wt + αa,t∇̂Wa
J(µ(·,Wa))

∣∣∣
Wa=Wt

. (7)

The critic in Eq. 6 is a parameterized Q-function,
Q(·, ·,Wc) : S × A → R, which indicates how desirable a
given policy is from a starting state-action pair. The param-
eters Wc are updated so as to minimize the loss

Lt(Wc) = (8)

Est∼ρβ(·),at∼β(·|st)
[
(Q?(st, at)−Q(st, at,Wc))

2
]
,

where Q∗ is the optimal Q-function and ρβ is a discounted
state visitation distribution under an exploration policy β.
In practice, we estimate the values of Q∗ with a bootstrap
target.

We update the parameters in Eq. (8) for the critic us-
ing batch gradient descent, where our batch data come from
a cache of tuples of the form (st, ut, st+1, r(st, st+1, ut)).
Hence, it is important that our state properly captures the
dynamics of the system it represents, so as to make mean-
ingful parameter updates.

General RL State and Rewards

We define the RL state in terms of trailing sequences of
input and output values with possibly different parameters
dy and da:

st = 〈yt, yt,sp − yt, . . . , yt−dy , yt−dy,sp − yt−dy , (9)
ut−1, . . . , ut−da〉.

Here y.,sp is the user-specified sequence of set-point values,
typically a constant sequence. We allow dy = da = 0,
which corresponds to a ‘memoryless’ state st = 〈yt, yt,sp−
yt〉 defined only in terms of the current output.

In (Spielberg et al., 2019), a feedforward neural net-
work structure is used to represent the parameterized actor
and critic. However, the more general RL state in Eq. (9)
contains time-dependent terms, making a feedforward neu-
ral network inadequate for representing the actor and critic
networks. For example, a feedforward neural network rep-
resentation for the actor would take as its input the state st
from Eq. (9) and learn separate parameters for each indi-
vidual position of the state vector, despite the fact that the
measurements in the state vector are temporally related and
the next state vector st+1 contains many of the same ele-
ments as its predecessor st.

In contrast, a Recurrent Neural Network (RNN) shares
its parameters across each time-step (Goodfellow et al.,
2016), leading to a structure with hidden states that de-
pends explicitly on past values of a sequential input. There-
fore, we parametrize the actor-critic architecture using RNN
models. Specifically, both the actor and critic networks are
sequentially fed tuples of the form 〈yt, yt,sp − yt〉, but the
output steps vary slightly. For the actor, the final hidden
state passes through an affine transformation to give the ac-
tion ut. For the critic, we scale the action ut and the final
hidden state, then pass them through a single-layer feed-
forward network with some non-linear activation. The RNN
structure may have multiple layers and more complicated
cell structures, such as Long Short-Term Memory (LSTM)
(see (Goodfellow et al., 2016)).

Now, in the more general setting of our RL state given
by Eq. (9), we propose a new reward function designed to
encourage set-point tracking and discourage abrupt changes
in the control. Define

∆~ut :=
[
ut − ut−1, ut−1 − ut−2, . . . , ut−da+1 − ut−da

]T
.

(10)

Then we express the cost associated with the state st and
control ut by

R(st, st+1, ut) := |yt,sp − yt|+
√

∆~uTt Q∆~ut (11)

= |yt,sp − yt|+ ‖∆~ut‖Q , (12)

where Q is positive definite. Alternatively, Q can be taken
to be zero. Our reward function is then defined to be

r(st, st+1, ut) :=−R(st, st+1, ut). (13)

Figure 1: (left) Tracking of arbitrary set-points; (right) Input generated by the DRL controller.

One straightforward choice for the matrix Q in our cost
function is

Q =diag[α1, α2, . . . , αda] (14)

where 0 < αda ≤ · · · ≤ α1 � 1.

Results

We demonstrate our approach with a simple example.
Consider a plant given by the following discrete-time trans-
fer function:

G(z) =
.05z−3

1− .86z−1
. (15)

Note that Eq. (15) is used purely for simulation purposes.
That is, our algorithm does not require a model for the plant
dynamics. Fig. (1) shows the input and output responses of
the DRL controller for two randomly generated set-points.

The DRL controller was trained on integer-valued set-
points between in [0,5] for 300 episodes, each consisting of
200 time steps. We implemented our algorithm in Python.
The actor and critic networks were built and trained using
Tensorflow. The actor was modeled with a single-layer
RNN architecture with LSTM cells and 150 neurons. The
final output was wrapped to a scalar, so as to provide the
next action ut following st, where st is defined in Eq. (9)
with dy = 2, da = 2. The past two actions were used in Eq.
(13). The critic architecture is the same as the actor, except
we added a single feed-forward layer after the final output
in order to incorporate the most recent action ut. All layers
in our models used ReLU activation.

Conclusion

We propose a new RL state in terms of the past inputs
and outputs of a process. This representation is more
characteristic of the underlying dynamics in which the
DRL controller is operating. As such, this representation
motivates the the utility of an RNN structure for the actor
and critic networks. To conclude, we define a new reward
hypothesis that weighs the increments of the control actions
and the current output error; maximization of this reward
function is then obtained through smooth set-point tracking
by the DRL controller.

References

Bhatnagar, S., Ghavamzadeh, M., Lee, M., and Sutton, R. S. (2008). Incre-
mental natural actor-critic algorithms. In Proceedings of the Advances
in Neural Information Processing Systems, pages 105–112, Vancouver,
Canada.

Degris, T., White, M., and Sutton, R. S. (2012). Off-policy actor-critic.
arXiv Preprint, arXiv:1205.4839.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Kaisare, N. S., Lee, J. M., and Lee, J. H. (2003). Simulation based strategy
for nonlinear optimal control: application to a microbial cell reactor.
International Journal of Robust and Nonlinear Control, 13(3-4):347–
363.

Kano, M. and Ogawa, M. (2009). The state of the art in advanced chemical
process control in Japan. IFAC Proceedings Volumes, 42(11):10–25.

Lee, J. H. and Lee, J. M. (2006). Approximate dynamic programming
based approach to process control and scheduling. Computers & Chem-
ical Engineering, 30(10-12):1603–1618.

Lee, J. M., Kaisare, N. S., and Lee, J. H. (2006). Choice of approximator
and design of penalty function for an approximate dynamic program-
ming based control approach. Journal of process control, 16(2):135–
156.

Lee, J. M. and Lee, J. H. (2004). Simulation-based learning of cost-to-go
for control of nonlinear processes. Korean Journal of Chemical Engi-
neering, 21(2):338–344.

Lee, J. M. and Lee, J. H. (2005). Approximate dynamic programming-
based approaches for input–output data-driven control of nonlinear pro-
cesses. Automatica, 41(7):1281–1288.

Mu, C., Wang, D., and He, H. (2017). Novel iterative neural dynamic
programming for data-based approximate optimal control design. Au-
tomatica, 81:240–252.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller,
M. (2014). Deterministic policy gradient algorithms. In Proceedings
of the 31st International Conference on Machine Learning, Beijing,
China.

Spielberg, S., Tulsyan, A., Lawrence, N. P., Loewen, P. D., and Gopaluni,
R. B. (2019). Towards self-driving processes: A deep reinforcement
learning approach to control. AIChE Journal. https://doi.org/
10.1002/aic.16689.

Spielberg, S. P. K., Gopaluni, R. B., and Loewen, P. D. (2017). Deep re-
inforcement learning approaches for process control. In Proceedings of
the 6th IFAC Symposium on Advanced Control of Industrial Processes,
pages 201–206, Taipei, Taiwan.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000).
Policy gradient methods for reinforcement learning with function ap-
proximation. In Proceedings of the Advances in Neural Information
Processing Systems, pages 1057–1063.

http://www.deeplearningbook.org
https://doi.org/10.1002/aic.16689
https://doi.org/10.1002/aic.16689

