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Abstract Overview 
We explore the deep connection between data-driven Bayesian statistical inference and stochastic programming 
paradigms for decision-making under uncertainty. As a motivating example, we consider optimal participation 
strategies in multiscale electricity markets. We use Gaussian Process (GP) regression to develop probabilistic 
models for energy prices. Time series price forecasts are then sampled from the GP predictive distribution. These 
forecasts enable two modes of optimal market participation: i) for self-scheduling, the resource (e.g. generators, 
consumers, storage) determines when to buy/sell energy and takes the market price; ii) alternately, a resource can 
submit bidding curves. Both participation modes are also formulated as stochastic programs. We compare these 
two modes of market participation using historical day-ahead market data from CAISO for both energy storage and 
thermal generators. We show that the self-schedule mode is less robust to market uncertainty but allows a resource 
to ensure feasible operation. In contrast, bidding into the market is more robust to uncertainty but does not guarantee 
feasible operation.  
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Introduction
As part of the emerging smart grid paradigm, many 

energy intensive industrial systems now modulate their 
operations to better align with fluctuations in energy market 
prices (Chmielewski, 2014). A standard technique to 
estimate these energy economic opportunities is to calculate 
the maximum possible revenue in retrospect (Walawalkar 
et al., 2007). An important limitation of this technique is 
that the use of perfect information, which does not capture 
market uncertainty and thus only provides an upper bound 
on revenue opportunity. In reality, resources participate in 
wholesale energy markets under uncertainty via two modes: 
self-schedule and bidding. 

 
If a resource self-schedules in the market, they 

determine when and how much electricity to 
consume/produce and take the market price. This market 
participation mode can be formulated as a single or multi-
stage stochastic program. Resources seek to minimize their 
expected operational cost or maximize their revenue. In 
their seminal work, Ierapetritou et al. (2002) analyzed 
energy-intensive processes like air separation units (ASU) 
using 2-stage stochastic programs. Recently, Kumar et al. 
(2018) proposed a multi-stage stochastic model predictive 
control (MPC) framework for stationary battery systems. 
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See the literature reviews of Dowling et. al. (2017), 
Dowling & Zavala (2018) and Sorourifar et. al. (2018) for 
additional examples. 

 
Alternatively, an energy resource can also submit 

bidding curves. Bidding curves are time-varying piece-wise 
constant price and energy pairs, as shown in Fig. 1. A 
bidding curve communicates to the market the resources’ 
flexibility and marginal costs. Calculation of bidding curves 
for the day-ahead and real-time market is also formulated as 
stochastic programs, and again the expected operational 
cost (revenue) is minimized (maximized). Non-decreasing 
constraints, an analog to non-anticipativity constraints, 
enforce the shape. For example, stochastic programs have 
been applied to derive bidding curves for wind power 
systems (Dai and Qiao, 2015), concentrating solar power 
plant (Dominguez et al., 2012), aluminum smelters (Zhang 
and Hug, 2015), thermal generators (Plazas et al., 2005), 
and virtual power plants (Pandžić et al., 2013). 



  
 

 

Figure 1. Each point on the bidding curve corresponds to a 
price forecast (scenario) in the stochastic program. When 
the market clears and the energy clearing price is set, the 
resource is scheduled to deliver/consume the corresponding 
power specified on the bidding curve. 

 
We emphasize that both participation modes use energy 

price forecasts to construct the scenarios for the stochastic 
programs. Autoregressive integrated moving average 
(ARIMA) is one of the most popular forecasting methods 
(Dai and Qiao, 2015; Plazas et al., 2005; Dominguez et al., 
2012). We argue that Bayesian methods offer advantages 
over these traditional timeseries forecasting techniques. 
Bayesian formalism naturally provides posterior and 
predictive distributions for which to compute an expectation 
(or risk metrics) over. In this work, we use Gaussian Process 
(GP) regression to model uncertain energy prices. Time 
series price forecasts are then sampled from the GP 
predictive distribution. Using these forecasts, we compare 
both modes of market participation for stand-alone energy 
storage and thermal generators. 

Gaussian Process (GP) Regression 
We start by learning a Gaussian Process regression 

model for stochastic energy prices (Bishop, 2006). 
Immediately previous d historical prices are used as a vector 
input. We use a Gaussian distribution with a zero mean and 
a covariance (𝑲) constructed by the radial-based function 
(RBF) kernel as the energy price (𝒚) prior distribution: 

 
 

We also use a Gaussian likelihood function with 
Gaussian noise for historical prices (𝒕): 

 
 
Using the properties of linear Gaussian models, we can 

derive the marginal likelihood function (Eq. (3)) and the 

predictive distribution (Eq. (4)), where 𝑚 and 𝜎& are 
functions of the inputs, i.e. immediately previous prices.  

 
 
 
 
The kernel hyperparameters are learned by maximizing 

Eq. (3) the marginal likelihood function (Type II ML). 
Finally, with the learned hyperparameters, price forecasts 
can be sampled from the predictive distribution. For 
example, an ensemble of forecasts for the 1-hour day-ahead 
market is shown in Fig. 2. 

 

 
Figure 2. The first 72 prices (hour 1429 - 1500) are used as 
a vector input. The predicted mean energy price is shown in 
blue along with a 95% prediction interval (grey area). The 
true prices are shown in black. 

Stochastic Programming Models 
Linear stochastic programs (Shapiro et al., 2009) are 

applied in both market participation modes. We minimize 
the expected operation cost function 𝒇(𝒙, 𝒕∗), where 𝒙 is the 
set of control variables of the energy resource and 𝒕∗ is the 
uncertain energy price. We formulate the stochastic 
programs as follows: 

min.	𝔼𝒕∗[𝒇(𝒙, 𝒕∗)]	

s.t.	𝑨𝒙 = b,			𝒙 ≥ 𝟎																																																																	(𝟓) 
where the constraints include the system physics and market 
participation rules. This formula is general and can be 
augmented to model either market participation mode. For 
self-scheduling, a set of non-anticipativity constraints is 
enforced to reach unanimous operational decisions across 
the uncertain space for some part of the planning horizon. 
Whereas, for computing bidding curves, a set of constraints 
is introduced to ensure higher energy production at higher 
prices, which makes the bidding curves non-decreasing and 
consistent with bidding rules in most of the markets. An 
example of day-ahead market bidding curves of thermal 
generators is shown in Fig. 1. 

Results 
We compare two types of energy systems. We consider 

the energy storage model from Dowling et al. (2017), where 
the stand-alone system is able to both buy and sell energy 

𝑝(𝒚) = 	𝒩(𝒚|𝟎,𝑲)																																																																(1) 

𝑝(𝒕|𝒚) = 	𝒩(𝒚|𝒕, 𝛽@A𝑰𝑵)																																																						(2) 

𝑝(𝒕) = 	𝒩(𝒕|0,𝑲 + 𝛽@A𝑰𝑵)																																																	(3) 

𝑝(𝑡∗|𝒕) = 	𝒩(𝑡∗|𝑚, 𝜎&)																																																								(4) 



  

 

subject to a round-trip efficiency. Second, we consider the 
thermal generator model from Plazas et al., (2005) which 
can only sell energy to the market. We use the energy prices 
from CAISO in 2015 to perform all the case studies. The 
descriptive statistics of the dataset are reported by Dowling 
& Zavala (2018). 

 
We also compare the two modes of market participation. 

Our preliminary results show that the self-schedule mode is 
less robust to market uncertainty but allows a resource to 
insure feasible operation. In contrast, bidding into the 
market is more robust to uncertainty (i.e., the resource 
submits several contingencies via their bid curve) but does 
not guarantee feasible operation. This is especially 
important for energy storage systems, where the amount of 
stored energy may prevent a resource from satisfying the 
cleared market schedule, incurring a penalty. Our ongoing 
work focuses on implementing a receding horizon 
framework for simultaneously participation in both day-
ahead market and (real-time) fifteen-minute market while 
ensuring a feasible operation. 

Conclusions 
We argue that there is a great opportunity for statistical 

learning to incorporate forecasting and uncertainty 
modeling. We especially advocate for Bayesian 
perspectives, as it provides posterior and predictive 
distributions after observations which is well-suited for 
stochastic programming, which seeks to optimize an 
expected value or other risk metric defined over of 
probability space. As an example, we review the different 
energy market participation modes and show how they 
leverage stochastic programming, a popular paradigm in 
process system engineering. A Gaussian Process regression 
model is developed for energy price forecasting. Finally, 
using energy storage and thermal generator models, we 
compare the two market participation modes: self-
scheduling and bidding. 
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