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Abstract

Spectroscopic instruments play an instrumental role in the implementation of the U.S. Food and Drug Administration (FDA) as
outlined in process analytical technology (PAT) guidance for biopharmaceutical manufacturing. Industrial spectroscopic calibration
models are typically developed in an offline setting using traditional regression-based methods, such as partial least squares (PLS)
and principal component regression (PCR). Apart from the limiting performances of these offline models under time-varying
operating conditions, these methods require access to large historical data, which are seldom available in biopharmaceutical
manufacturing. In this paper, we propose a novel just-in-time learning (JITL) platform for automatic real-time model calibration
and maintenance using routine campaign data. The proposed framework uses Bayesian non-parametric Gaussian processes (GPs)
as calibration models. A GP model not only exhibits superior performance over a PLS or PCR model across different operating
conditions but also provides credibility intervals around model predictions. The efficacy of the proposed method is illustrated on
a real-time calibration problem for a biopharmaceutical process.
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1. Introduction

The Raman spectroscopy is a modern PAT tool widely used
in biomanufacturing. As an optical method, Raman enables
non-destructive analysis of chemical composition and molecu-
lar structure. Applications of Raman in the polymer, bioman-
ufacturing, and biomedical analysis have surged in the past
three decades as laser sampling, and detector technology has
improved. Raman spectroscopy is now a practical analysis tech-
nique inside and outside the laboratory.

Raman models in biomanufacturing are nontrivial to cali-
brate as biopharmaceutical processes operate under many strin-
gent constraints and tighter regulations. The current state-of-
the-art for Raman model calibration in the biopharmaceutical
industry is first to run multiple campaign trials to generate rele-
vant data to correlate the Raman spectra to the analytical mea-
surements. These trials are not only expensive to campaign but
also time-consuming, as each campaign may last anywhere be-
tween two to three weeks in laboratory settings. Further, to en-
sure that a lab-scale bioreactor (usually with a working volume
of 1 − 3 L) maintains a healthy mass of viable cells, only lim-
ited samples are available for the analytical instruments. It is
not uncommon to have only one or two measurements available
each day from the in-line or offline analytical tools. Further,
once a calibration model is built, it is common to observe the
performance of the model degrade with each campaign. This is
because, biomanufacturing processes often undergo a different
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kind of changes, such as the recipe change, raw material vari-
ability, and process-drifts that may cause gradual degradation
of the calibration model. Calibration models based on PLS or
PCR are worst affected, as the performance of these methods
is prone to degrade under such dynamic operations. It is there-
fore imperative to update the calibration model periodically to
ensure that the model reflects on the current process operations
and can sustain good prediction performance.

To address some of the limitations mentioned above of the
current best industrial practices, this paper proposes a JITL
platform for building Raman calibration models for biophar-
maceutical applications. JITL is a novel nonlinear modeling
platform, that is based on local-modeling and database sam-
pling technology. Different from traditional methods, JITL as-
sumes that all available observations are stored in a central
database, and models are dynamically built in real-time upon
query, using the most relevant data from the database. This al-
lows to approximate complicated process dynamics using sim-
ple local models. Under the JILT framework, a library may
contain spectral data not only for a single product operating
under different operating conditions, but also data for vari-
ous products, and under different media conditions. In other
words, it is possible to recycle spectral data from across dif-
ferent product lines and from across different operating condi-
tions. This significantly reduces the time required to calibrate
Raman models, especially for the pipeline drugs, with limited
or no past production history. For local modeling, we propose
to use Gaussian Process (GP) models [1], which are powerful
statistical machine-learning models that can efficiently capture
complex nonlinear process dynamics and readily adapt to any
process changes. In contrast to a PLS or PCR model, a GP
model is a non-parametric method and offers far more flexibil-
ity in capturing the complex correlations between the spectra
and the analytical measurements. The proposed method in-
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Figure 1: A flowchart for the proposed JITL-based Raman model.

troduces a paradigm shift in the way biopharmaceutical cali-
bration models are built and maintained, which to the best of
authors’ knowledge have not been done before.

2. Just-in-Time Learning (JITL) Framework

JITL is a novel nonlinear modeling platform, that is based on
local-modeling and database sampling technology [2]. Differ-
ent from traditional methods, JITL assumes that all available
observations are stored in a central database, and models are
dynamically built in real-time upon query, using the most rel-
evant data from the database. In general, there are three criti-
cal steps in JITL. First, when a query sample arrives, samples
that are most ‘similar’ to the query sample are selected from
the database as training samples. Second, a local regression
model is built using the training samples. Finally, the local
model is used for predicting the output of the query sample. A
JITL model only has a local validity around the query point as
the model is discarded immediately after use, just to be rebuilt
again around the next query point. To ensure that the library
stays updated, if an analytical measurement is available at any
time, as a part of routine offline or in-line sampling schedule,
the library is updated by adding the spectrum and the corre-
sponding analytical measurement to the library. This ensures
that the current process information is a part of the library.

The critical factor for the success of the JITL technique
is to select relevant samples properly, which is based on cer-
tain similarity or dissimilarity measurements. Hence, several
sample selection methods have been developed in recent years,
like the Euclidean or Mahalanobis distance-based, angle-based,
and correlation-based similarity indices. Mathematically, given
a query point a? ∈ Rna , and a central library Lt ≡ {bi,ai}Lt

i=1

containing Lt ∈ N input-output pairs, we are interested in se-
lecting a local training set Dt ≡ {bj ,aj}Dt

j=1 at time t ∈ N
containing Dt ∈ N samples, where Dt << Lt. It is assumed
that Lt is dynamic, and may include different entries during a
campaign. Now there are numerous ways to construct Dt from
Lt. For the JITL framework proposed in this paper, we select
Dt based on Euclidean distance between the spectra in set Lt.
This is motivated by the fact that GPs in the proposed JITL
framework is also based on the Euclidean distance. A schematic
of the proposed JITL-based Raman model is given in Figure
1 and the algorithm is formally outlined in Algorithm 1. As

Algorithm 1 JITL-based Raman model

1: Input: Library Lt, query point a?

2: Output: Model predictions
3: for t = 1 to T do
4: Set Ut ← Lt and Dt ← {∅}
5: for j = 1 to Dt do
6: k? ∈ argmini∈Ut ||ai − a?||2
7: Dt ← Dt ∪ {bk?

,ak?
}

8: Ut ← Lt \ Dt

9: if Dt ∩ {bLt
,aLt
} = {∅} then

10: Dt ← Dt ∪ {bLt ,aLt}
11: end if
12: end for
13: Train GP with Dt and compute model predictions
14: if b?? is available then
15: Lt+1 ← Lt ∪ {b??,a?}
16: end if
17: end for
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Figure 2: Comparison of the proposed JITL glucose predictions
(solid-blue curve) and the true glucose concentrations measured us-
ing the analytical instrument. 95% credibility interval around the
model predictions are represented by the grey shaded area.

noted earlier, to ensure that the library Lt remains current, if
at anytime during the experiment, if the data point {b??,a?} is
made available, where b?? is the analytical measurement corre-
sponding to the spectral scan a?, then the library is updated to
include the new entry. This step is captured in Steps 14–15 in
Algorithm 1. To ensure that the local model quickly adapts to
any abrupt process changes or a new product, we always include
the last available measurement from the current experiment in
the training set. This is given in Steps 9–11 in Algorithm 1.
An industrial case study is discussed next.

3. Industrial Case study

We demonstrate the efficacy of Algorithm 1 in calibrating Ra-
man models in biomanufacturing. A Chinese hamster ovary
(CHO) monoclonal antibody (mAb) secreting cell-line derived
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from the host was used for experiments. The cell line was sta-
bly transfected with a proprietary DNA vector to express the
relevant mAb. All media and feeds used in the experiment are
proprietary solutions. The experiments were carried out in a
laboratory fed-batch cell-culture bioreactor.

Controlling glucose concentration in cell-culture bioreactors
through optimized feeding strategies is highly essential, and is
critical for increasing cell-growth, and hence productivity as
well as product quality consistency. The glucose concentra-
tions are currently analyzed as frequently as every 6 hour using
an in-line automated sampling system – BioProfile Flex Ana-
lyzer (Nova Biomedical, Waltham, MA). To calibrate a Raman
model, in parallel to the analytical instrument, a stainless-
steel immersion probe was also used to collect and transfer
cell-culture Raman signal through a fiber optic probe to a
RXN2 Raman Analyzer (Kaiser Optical Systems Inc., Ann Ar-
bor, MI). A laser with 785 nm excitation wavelength was used,
with an approximate power of 200 mW at the probe tip. The
Raman spectra were acquired by implementing cosmic-ray re-
moval and dark-spectrum subtraction with an exposure time
of 10 seconds, adding 75 scans consecutively to result in a col-
lection time slightly above 750 seconds (considering overhead
instrument time). The interval for collecting Raman spectra
was approximately 15 minutes.

The cell line used in the experiment did not have previ-
ous campaign history. No historical data is available for the
cell-line to calibrate the Raman glucose model. In such a sce-
nario, the standard model calibration practice is to continue
running multiple campaign trials to collect relevant and suf-
ficient data. Unfortunately, a campaign lasts for about two
weeks in a laboratory setting and incurs significant material
cost alone. Running additional campaign trials in biophar-
maceutical manufacturing is not only labor and cost-intensive,
but it also causes delays in getting the drug to the patients. To
mitigate this, in the absence of any historical data, we build a
library for the JITL platform using cell-culture data from our
past experiments. In this work, we take data from two other
experiments, that were previously campaigned for two different
cell lines and under different media profiles and operating con-
ditions. We use this library as a starting point to implement
the proposed JITL framework.

The original library contains 469 data points, and for lo-
cal modeling, we choose 100 training samples. The size of the
training set is fixed throughout the campaign; however, the
library size is dynamic, as new measurements from the BioPro-
file Flex Analyzer are included as they become available. The
training set also contains the last recorded entry in the library
from the current experiment. This is to ensure that the Raman
model quickly adapts to the new cell-line (see Algorithm 1).

Figure 2 compares model predictions from the proposed
JITL platform to the BioProfile Flex Analyzer measurements.
95% credibility intervals around the predictions are also shown.
Overall, the model predictions are in close agreement with the
analytical measurements. Observe that despite having no past
campaign history, the model can quickly adapt to the new cell-
line, without significant delays. The total root-mean-square
error (RMSE) with Algorithm 1 is 13.83.

Figure 3 shows a scatter plot comparing the performances
of the model with static and dynamic libraries. A static library
is not updated based on the new measurements sampled during
the experiment. The benefits of maintaining a dynamic library
are evident. The total RMSE with a static library is 68.86,
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Figure 3: Predicted vs. true glucose concentrations with the pro-
posed method using dynamic and static libraries.

which is significantly higher than that for the dynamic library.

4. Conclusions

In this paper, we proposed a novel just-in-time Gaussian pro-
cess modeling framework to quickly calibrate spectroscopic in-
struments in biopharmaceutical manufacturing using routine
operating data. The developed method is an adaptive learning
algorithm that allows for automatic real-time model calibration
and model maintenance for different cell-lines across different
operating conditions. Another distinct advantage of the pro-
posed method over traditional methods is that it yields credi-
bility intervals around model predictions, which can be used to
design robust control and monitoring strategies. The proposed
adaptive framework presents a paradigm shift in the way model
calibrations are typically performed in biopharmaceutical man-
ufacturing; and has a potential to significantly reduce material
and labor costs associated with such routine calibrations.
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