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Abstract 

Recent advances in artificial intelligence and data analytics have demonstrated that complex input-
output relation can be learned by a deep neural network architecture when a large amount of training data 
is available.  In development of data-driven soft-sensor for process control, there is always the concern 
whether sufficient physics were captured to allow for successful extrapolation and inference of other 
properties.  To make up for the lack of important information, a dynamic model using past sensors readings 
and operating parameters was commonly used.  However, simple input-output models in the form 
backpropagation neural work were shown to be unable to predict correct differential change of output (i.e. 
process gain), if the amount of data is not sufficient.   To overcome this problem, one approach is to train 
a preliminary model using simulation data and use transfer learning to match plant data.   It was found 
that gain consistency of the preliminary model can be preserved, while the prediction accuracy of the 
model can be substantially improved with only a limited amount of actual data.  Alternatively, a semi-
supervised training approach can be used.  A nonlinear state-space model can be formulated in an 
observer-predictor form using a sequence-to-sequence recurrent network encoder.  The observer can be 
trained using the large amount of unlabeled data provided by flow, pressure and temperature sensors. This 
observer-encoder outputs a limited number of hidden states using unlabeled dynamic data in the past 
operating window.   These hidden states and the current values of manipulated variables were then used 
as input for a predictor which can be developed with a limited number of labeled data. The gain sign is 
mostly consistent, indicating that sufficient physics was captured by the model.    
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Introduction

Data-driven soft-sensor is a common practice in the 
chemical industry to improve quality control and process 
control (Kadlec et al 2009).   Chemical processes are usually 
nonlinear in nature, hence the use of neural networks for 
soft sensor development (Gonzaga et al 2009, Rani et al 
2013).  Neural network were known to have capabilities to 
model complex input-output relations (Hornik et al 1989, 
Lu et al 2017) with sufficient data.  There is always however, 
concerns whether such models have capture enough physics 
so that they can be extrapolate and generalized with 
confidence if there is not enough data or some critical 
information is not available.   
Motivating Example 

Consider a distillation column in a local refinery.  The 
distillate composition of the heavy key ݕ௧  was measured 
once a day.  Data of 11 manipulated variables ࢛௧, 8 sensors 
variables ࢙࢜௧ , temperatures, pressures, flows and levels 
were available every minutes over a three year periods. 
During this period only 900 samples of distillate 
composition were available. Moreover, the feed 
composition was not also available.  The reflux rate was 
operated manually to control distillate composition.  It is 
desirable to build a soft-sensor for predicting distillate 

composition so that the composition control can be closed 
automatically. 

To overcome the lack of information of the distillate 
model, a nonlinear input-output model was developed using 
online sensor data averaged every 10 minutes and a window 
width of 1 hours.   Hence a simple backpropagation network 
with 1-output and 11 ൈ 6 ൅ 8 ൈ 5 ൌ 106  inputs was 
constructed.  

௧ାଵݕ ൌ ݂ሺ࢛௧, ,௧ିଵ࢛ ,௧ିௐ࢛⋯,௧ିଵ࢙࢜  ሻ  (1)	௧ିௐ࢙࢜	
The out of the 818 data, 103 were used as the test data and 
the BPNs were trained with 715, 358, 179, 90 samples, 1/10 
of these samples were used as validation data.  

The RMSE of test data is a commonly used indicator of 
the prediction ability of a data-driven model.  An alternative 
way to test whether our data-driven model is consistent with 
the physics of the process is to calculate the process gain for 
some important operating parameters.  Without loss of 
generality, let ∆ݑଵ,௧,  be the change of reflux rate.  The 
effects of changing the reflux rate at any data points were 
calculated for all the data: 
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The quality variable is the composition of the light key in 
the distillate.  Hence the sign of the gain must be negative 
for all samples for the model to physically meaningful.  The 
gain consistency can be defined as the fraction of samples 
points at which the gain estimated by the model has the 
correct sign.  Figure 1 plotted the relation between RMSE 
of test data and gain consistency. It is obvious that the gain 
consistency became very poor when the number of training 
data became less.  Furthermore, there is no correlation 
between the RMSE and gain consistency. 

 
Figure 1: Relation between gain consistency and 

prediction accuracy of different BPN models 
In some applications, the soft sensor model also serves 

as the input-output model for use in model predictive 
control.  It is imperative that the gain sign is consistent with 
the actual gain such applications.   Two approaches were 
investigated in the following. 
Transfer Learning 

For a simple process such as distillation, dynamic 
simulation data can be easily obtained using dynamic 
process simulators such as CHEMCAD.  However, the 
actual dynamics may be different when the actual valve 
sizing, pipe sizes, tray internals, sump size and controller 
parameters are different.  To obtain all these information 
may also be a tedious procedure.   In this work, a dynamic 
process simulator was built by CHEMCAD.  All equipment 
parameters such as column diameters, and valve size were 
determined using auto-sizing procedure. Controller 
parameters were obtained by auto-tuning procedure.  Large 
amount of data were generated by random variations of inlet 
feed flow and compositions.  Preliminary models (Table 1) 
with the same input-output structure as in equation (1) were 
trained using these simulation data. Due to the large number 
of training data available, we can see that the gains of these 
preliminary models were always gain consistent. However, 
these preliminary models perform poorly when used to 
predict actual plant data, as found in the last column of 
Table 1.  This is understandable since all the equipment data 
and control parameter relevant to the dynamic behavior 
were not correct.  

A transfer learning procedure known as fine tuning can 
be used to modify the model by retraining the weights of 
selected layers using available plant data (Yosinski et al 
2014).  In Table	2  show the prediction accuracy of the 

preliminary model can be substantially improved when it 
was fine-tuned by different numbers of training data, while 
retaining the gain consistency.  However, the effects of fine 
tuning different weights are different, especially with a deep 
network. it should be noted that there is no general rule of 
thumb in transfer learning whether shallow weights or deep 
weighs should be fine-tuned (Yosinski et al 2014, Li et al 
2016). 

Table 1: Prediction accuracy of proxy models 
Structure #Param./ 

#data 
RMSE 

Test Data 
% Gain 

Correctness 
All data 

RMSE 
Plant. 
Data 

1 layer 1.20 157 100% 10562 
2 layers 1.82 126 100% 4898 
5 layers 3.04 111 100% 2957 

 
Table 2: Prediction accuracy of proxy models 

Number 
of 

Hidden 
Layers 

Fine-
tuned 

Weights

# of  
Training 

Data 

#Param.
/ 

#data 

% Gain 
Correct-

ness 
All data 

RMSE 
Plant. 
Data 

1-layer 

Hidden 
Layer 1 

to 
Output 

90 132 100% 109 
179 66 100% 112 
385 33 100% 101 
719 17 100% 95 

2-layer 

Hidden 
Layer 2 

to 
Output 

90 137 100% 154 
179 69 100% 90 
385 34 100% 82 
719 17 100% 92 

5-layer 

Hidden 
layer 5 

to 
Output 

90 137 73% 166 
179 69 96% 145 
385 34 91% 142 
719 17 99% 144 

5-layer 
Input to 
Hidden 
layer 1 

90 131 100% 97 
179 66 100% 101 
385 33 100% 87 
719 17 100% 96 

5-layer 
Hidden 
Layer 1 
and 5 

90 268 100% 99 
179 135 100% 96 
385 67 100% 86 
719 34 100% 89 

Sequence-to-Sequence Recurrent Network 
A soft-sensor model can be cast into a sequence-to-

sequence model, which is often used in speech recognition 
(Cho et al 2014; Sutskever et al 2014). The many-to-one 
observer model and the un-label data predictor Figure 2a 
can be trained using the large number of sensor variables 
available (80000 samples over a two-year period).  After 
training the hidden state observer, the un-label predictor is 
replaced by a back propagation network  (BPN), which uses 
the observed hidden states and the current manipulated 
variable as input, to predict the quality (Figure 2b). 

The relation between gain consistency and prediction 
accuracy of different label data predictor models obtained 
with various sizes of training data was shown (Figure 3).   
Regardless of the number of data used and structure of the 
neural network predictor, the gain consistency is always 
high. 

The leverage of unlabelled data in machine learning is 
known as semi-supervised training method (Liu et al 2018).  
In model based soft-sensors, state variables of a physical 
model were determined using observers (Tham et al 1989).  
However, in our sequence-to-sequence model, no physical 
models were required.  Both the observers and predictor 



  

 

were data-driven.  Unlabelled data were used to the train the 
observer in a supervised manner in which past history was 
used to predict future dynamics.  
 

 
(a)The RNN observer and the unlabelled data predictor 

 

 
(b) The ANN predictor 

Figure 2: Structure of a sequence-to-to sequence recurrent 
network for soft sensor implementation 

  
Figure 3: Relation between gain consistency and 

prediction accuracy of different label data predictor 
models obtained with various sizes of training data set 

 
Conclusions 

In this study, the effect of data availability in capturing 
physics of a process using a data-driven model were 
examined. Prediction errors of test data may not be a good 
indicator of whether the model is consistent with physics.  
The consistency of sign of the derivative of output to input 
is a more demanding indicator.  Two approaches were 
presented to resolve the challenge of building a gain 
consistent model with limited data.  If an approximate 

physical model is available, simulation data can be used to 
construct a base model, which can be transferred into a real 
model by fine tuning with a limited amount of data.  
Alternatively unlabeled data can be used to encode past 
history into a limited number hidden states in a sequence-
to-sequence recurrent neural network, which can be then 
used to predict label data.  In the application to a distillation 
example, we found that both approaches are able to improve 
the physical meaningfulness of the data-driven model.   
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