
  
   

IMPROVED ACCURACY AND EXPLAINABILITY  
OF MACHINE LEARNING IN MULTIPHASE 

FLOWRATE ESTIMATION USING PHYSICS-AWARE  
ALGORITHMS 

Timur Bikmukhametova, Johannes Jäschkea* 

aDept. of Chemical Engineering, Norwegian University of Science and Technology 
NO-7491, Trondheim, Norway 

Abstract Overview 

Machine learning algorithms for multiphase flow estimation are an attractive alternative to the first 
principles modeling approach and traditional hardware metering devices. One of the drawbacks of these 
methods is that they are often used as a black-box solution with unexplainable behavior, which is one of 
the reasons why petroleum engineers commonly prefer conventional flow metering methods. In this 
paper, we create machine learning models for each part of the production system which are more aware 
of the physical behavior of the system than the algorithms which use the raw data directly. In addition, 
we propose a simple strategy for combining the models using a linear meta-model which helps to explain 
the model behavior. We test this approach using several machine learning algorithms based on real field 
data. The results show that in addition to obtaining more physically meaningful machine learning 
algorithms, which are easier to interpret, the prediction accuracy of the models improves.  
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Multiphase flow estimation in oil and gas production 
systems is an important problem to solve to achieve 
efficient production optimization, improved oil recovery 
and robust operation with respect to flow assurance. An 
attractive alternative to traditional estimation methods of 
the production rates, such as multiphase flow meters 
(MPFMs) and test separators, is Virtual Flow Metering 
(VFM) which can be used as a standalone metering 
solution as well as a back-up system to the hardware 
devices. This approach is based on incorporating readily 
available field measurements such as pressure, temperature 
and choke opening into a mathematical model of the 
system. The mathematical formulation can be based on 
either first principles or machine learning (ML) models. 
The first principles VFM systems typically include mass, 

momentum and energy balances and consider the detailed 
physical representation of the production system to achieve 
high estimation accuracy (Holmås and Løvli, 2011). It 
results in a well-explainable behavior of the VFM system 
and good exploratory capabilities even when limited data 
is available. At the same time, it requires deep 
understanding of the complex multiphase flow behavior. 
Moreover, computational cost can be very high due to 
numerical solving procedure of the partial differential 
equations and the embedded non-linear optimization 
problem.  

On the other hand, machine learning VFM systems 
typically do not consider the specifics of the process, for 
instance, well tubing geometry or flow regime, and flow 
estimation is performed based on the available data only. 



  
 
In most cases, feed-forward neural networks (NNs) were 
used for this task (Al-Qutami et al, 2018), while recurrent 
neural networks (Andrianov, 2018) and gradient boosting 
regression trees (GBRT) (Bikmukhametov and Jäschke, 
2019) have also been recently tested. The advantage of ML 
VFM is that it is relatively easy to setup and perform 
inference when the model is trained. On the other hand, the 
produced results can be hard to explain because of the 
black-box nature of the machine learning algorithms.  

In this paper, we propose an approach which combines 
the two VFM methods. To do this, we create input features 
for machine learning algorithms which are based on a 
physical relationship between the raw measurements and 
make algorithms to represent a certain production system 
part, for instance, a production choke. In addition, we 
create a linear meta-model which combines the created 
algorithm, improves the prediction accuracy and identifies 
the importance of each model. Using this approach, we: 1) 
create an explainable and physics-aware model; 2) improve 
the estimation accuracy by combining the algorithms in a 
clear and simple manner. 

Methodology 

Data 

The data used in training and testing the algorithm 
performance is taken from a real field and based on 
measurements of sensors and a MPFM installed in a well 
in the North Sea. The system and the available data are 
shown in Figure 1. The data is relatively challenging for 
accurate estimation because the well is at the end of 
production period which means the fluid properties of the 
multiphase flow mixture change continuously, so that 
flowrate, which corresponds to certain pressures and 
temperatures now, may not be the same even after a short 
time period, which can influence the algorithm 
performance. 

Physics-Aware Machine Learning Models 

To create physics-aware machine learning models, 
first, we generate physically meaningful features instead of 
using the raw measurements directly. More specifically, we 
use choke and well tubing models. At the same time, we 
use simplified first principles models instead of more 
complex ones and exploit the machine learning algorithms 
to adjust the models such that they describe the data well. 

For the choke model, we use a simple Bernoulli model 
with mixture fluid properties. For the tubing momentum 
equation model, we use a steady-state No-Pressure-Wave 
model which does not consider transient flow behavior and 
influence of viscosity and fluid acceleration. In addition, 
we do not use the temperature measurements directly, but 
rather the temperature drop over the choke and tubing. 
Since in a general case we do not measure the mixture 
density which is used in both models, we need to calculate  
 

 

Figure 1 – Schematic representation of a well 
with available measurements. 

it. To do this, we assume thermodynamic equilibrium 
conditions at the measurement points and use Soave-
Redlich-Kwong Equation of State to compute phase 
volume fractions and densities and then compute the 
mixture density. 

Case studies 

We consider static and dynamic approaches for 
machine learning modeling. For the static models, we use 
feed-forward neural networks, gradient boosting with 
regression trees and random forest (RF) as VFM systems. 
For dynamic modeling, we use recurrent neural networks, 
more specifically Long-Short Term Memory (LSTM). 
Each algorithm is tested in the following case studies: 

Case 1: ML model based on raw measurements. 
Case 2: ML model based on the choke model. 
Case 3: ML model based on the tubing flow model. 
Case 4: ML model based on choke and tubing features. 
Case 5: Meta-model based on linear regression and 
models from Case 2 and 3. 

To compare the algorithms in a fair manner and 
accurately tune them at the same time, we perform 
Bayesian optimization of the hyperparameters and the 
algorithms’ architectures using Expected Improvement 
acquisition function. The number of epochs and tree 
estimators is tuned using early stopping on the validation 
set. 

Results and Discussion 

Due to the limitations of the extended abstract length, 
we present an example of the results for the GBRT 
algorithm only, which are shown in Figure 2. We can see 
that all the cases with modified input features outperform 
the traditional machine learning VFM approach 
represented by Case 1. An interesting observation is that 
the choke model based algorithm in Case 2 is capable to 
capture more dynamic behavior and outlying flowrate 
values, and this result makes physical sense based on the 
model we created. Because the choke flow model is more 
dependent on the measured pressure change over the 
system (the tubing flow model also depends on the 
approximated head pressure loss), the pressure fluctuations  

 



  

  

 

Figure 2 – Performance of gradient boosting regression tree algorithm using the proposed methods 

over the choke helps to capture the dynamic flow 
fluctuations in a better way. Moreover, because the choke 
flow model describes the flow in a specific system 
location, the local change of the temperature also reflects 
high flow fluctuations well. 

The tubing flow model (Case 3) in general better 
describes the regions where more stable flow regimes are 
observed. In addition, Case 4 and 5 which combine the two 
models of Case 2 and 3 show even a better performance. In 
case of the linear meta-model, it can be seen that some 
parts of the model estimates correspond to the behavior of 
the choke model, for instance, when estimating the 
outlying flowrate values, while in other parts it resembles 
the behavior of the tubing model. In general, we can see 
that the meta-model resembles more the behavior of the 
choke model which is in correspondence of the model 
weights which are 0.76 and 0.39 for the choke and tubing 
models respectively. As such, from this we can clearly see 
the advantages of using a linear meta-model which 
combines the model representatives of each part of the 
production system. 

In general, explaining the algorithm performance 
based on the feature inputs is a hard task, however, in 
GBRT algorithm feature ranking is embedded into the 
training process, which makes it easier to interpret the 
algorithm outcomes. To emphasize the advantage of using 
the physics-based features, we show the feature importance 
for Case 1 (raw measurements) and Case 3 (tubing flow 
features) in Figure 3. In addition to the reduced feature 
space, we see that the created tubing mass flow feature has 
relatively high importance, which means that it helps the 
algorithm to describe the process behavior. In addition to 
the clear meaning, we can also control its importance by 
changing the feature complexity, for instance, applying a 
more comprehensive momentum balance equation. This is 
not the same in Case 1 where, apart from hardly 
explainable importance and meaning of the features, we 
cannot control its influence on the algorithm performance. 

The obtained results with other algorithms show 
similar performance and emphasize the same advantages, 
however, in neural networks additional methods for 
analyzing feature importance in Cases 2, 3 and 4 are 
applied because it is not included in the training process. 

Conclusions 

Predictive accuracy of machine learning algorithms in 
multiphase flowrate estimation can be improved by 

incorporating physical relationships into the algorithm 
features instead of using raw measurements directly. It also 
helps to improve explainability of the algorithm 
performance which is of great importance in decision 
making process during real field operation. The proposed 
methods can be further developed by incorporating more 
complex first principle models into the machine learning 
algorithms to improve the performance. 
 

 

Figure 3 – Comparison of feature importance 
(BH – bottomhole, WH – wellhead) 
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