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Abstract Overview 

With computer technology improving exponentially, data will grow incomprehensibly in size, complexity, 
and noise. However, latent within the data, valuable signals are hidden that, if discovered and analyzed, 
can offer abundant benefits, such as fault detection. Traditionally, principal component analysis has been 
used to perform fault detection in large, multivariate systems. However, these methods often struggle to 
find the true origin, as they are susceptible to contribution smearing. In this work, a chemical plant system 
was analyzed and a novel cluster and detect method for fault detection utilizing machine-learning 
clustering algorithms was created in aim to improve fault detection time and diagnosis. Plant data 
containing complex variables were simulated, clustered into groups, and analyzed through principal 
component analysis as individual groups. This approach often resulted in quicker identification and more 
accurate diagnosis than the traditional principal component analysis method. 
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Introduction

Faults in chemical plant systems can be immensely 
detrimental as they increase plant downtime, decrease 
product yield, cause environmental problems, and raise 
exposure to plant safety hazards. Occasionally, faults are 
obvious and can be easily discovered.  Other faults remain 
hidden and are even difficult to notice they have occurred. 
Data-driven fault detection techniques provide insight to 
how the plant is operating, even without any engineering-
based process knowledge or first-principle models. 
 

The industrial Internet of Things, expanded computer 
power, and next generation wireless sensors have caused 
manufacturing data such as flow, concentration, 
temperature, pressure, and dozens of other measurements to 
be taken multiple times per second. In larger settings, this 
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data can be overwhelming. One tactic to approaching large 
manufacturing data sets is to use clustering algorithms to 
partition the data tags into smaller, more digestible chunks, 
then to apply fault detection algorithms on those individual 
groupings. This allows clear vision when something has 
gone wrong in the process, and what tags are directly 
contributing.  

 
Fault detection through PCA (and other multivariate 

means) are well studied. Braatz, Chiang, and Russell have 
provided a detailed overview of several multivariate fault 
detection methods (Braatz et al., 2000). Methods where the 
plant is divided into separate groups and analyzed 
individually is referred to as decentralized multiblock 
modeling. Qin used multiblock analysis on an industrial 



  
 
polyester firm where the blocks were determined through 
process knowledge (Qin et al., 2001). Yan recently 
developed a way to perform the blocking in a purely data-
driven method through mutual information values to 
perform fault detection efficiently (Jiang & Yan, 2014).  
 

In this work, sensor data from a simulated chemical 
plant are clustered using a novel clustering algorithm to 
group the sensors into blocks. Traditional principal 
component analysis (PCA) is then applied on the smaller 
groups with Hotelling’s 𝑇"	being monitored. The proposed 
method proved at least equally proficient with respect to 
detection time and considerably improved fault isolation 
and diagnosis capabilities compared to the traditional PCA 
approaches. 

Clustering 

A custom-clustering algorithm was created based on 
correlation values between variables. After preprocessing 
the data through mean-centering, and normalizing by 
standard deviation, the absolute value of the Pearson 
correlation of the sensor was taken. A matrix was 
established comparing each sensor’s correlation to the 
others. The rows of the matrix were analyzed and all sensor 
relations below a defined correlation relation threshold were 
deemed insignificant. If duplicate arrays existed, they were 
absorbed into one, single array. Furthermore, a sub-space 
threshold was set to determine the minimum relation 
between groups to be considered associated. The arrays 
were respectively compared to the others and any array that 
shared a fraction of sensors at or above sub-space threshold, 
were considered a match and cumulatively combined into a 
larger array, which was repeated until convergence. Lastly, 
a minimum size threshold was defined to limit lower end of 
the array size.  
 

In this data set, the algorithm split the 376 sensors into 
nine specific groups within the data, with an additional 10th 

as a cumulative pot of previous groups that did not reach the 
minimum array size threshold. These different groups were 
created through purely data driven decisions, however, they 
resemble the individual units on the chemical plant 
simulation as if process knowledge was used. For instance, 
group one only includes tags from the second continuously 
stirred tank reactor (CSTR2) while group seven contains 
tags only associated with first plug flow reactor (PFR1) 
exclusively.  
 

The different clustering groups can also be evaluated 
by examining a heat map of the sensor’s Pearson’s 
correlations in the order of the corresponding groups with a 
one value representing exact correlation, and zero as no 
correlation. To fully understand how the proposed 
clustering algorithm has given shape to the data, it is 
important to first review the correlation heat map with the 
sensors in random order (Figure 1). The random order heat 
map is highly disorganized and difficult to read. Without 
any process knowledge or a clustering algorithm, it is 
challenging to tell how the sensors relate.  
 

The heat map after clustering allows the interconnected 
relationships between different parts of the plant to be seen 
(Figure 2). The first nine groups can be seen as the yellow 
boxes going along the diagonal on the heat map. In the 
bottom left corner, you will see a series of four, small 
yellow near identical squares, outlined in a red box. These 
represent the four independent CSTR’s at the beginning of 
the process. The CSTR’s (group one through four) are 
surrounded by very dark blue showing that each respective 
reactor is completely independent from the others. The sixth 
yellow square is comprised of sensors from part of the 
distillation column and is loosely correlated with all units 
that come before it. Square seven and square eight are the 
PFR’s. They contain a large number of variables, indicated 
by their family square size. The variables within the 
respective PFR’s are highly correlated, but are completely 

Figure 2. Sensor correlation heat map in random order Figure 1. Sensor correlation heat map after organized by 
clustering method 



  

independent of the other PFR by the two equi-sized dark 
squares that lie next to the PFR families. The final ninth box 
demonstrates the second distillation column group. The rest 
of the graph comes from group ten (the cumulative, small 
correlation groups) as well as the sensors that did not 
correlate above the correlation threshold with any other 
sensors.  

 Fault Detection Through PCA 

A mean 𝑇"	value as well as its standard deviation were 
taken across a span of normal operating behavior for the 
entire plant for the global method and the individual groups 
for the proposed clustering method. An abnormality 
threshold was defined to indicate when the process might 
have a fault. Abnormality was defined by a limit of standard 
deviations above the mean to signal anomaly. In this study, 
the abnormality threshold was defined as three standard 
deviations above the mean value, corresponding to a 99% 
confidence level using the F-distribution. Faults were 
considered detected when the 𝑇"	value crossed the 
abnormality threshold and stayed above it for a consecutive, 
M, minutes. Once the fault has been detected, the cause of 
the fault can then be evaluated. Through the global method, 
contribution scores were calculated and the top five sensors 
in magnitude were reported as the primary culprits. For the 
novel, cluster and detect method, the 𝑇"	values were 
monitored for the individual 10 groups. If a fault was 
detected in one of the groups through the same parameters 
mentioned above, that individual group was delegated 
responsibility for causing that fault. Contribution scores 
were also calculated within this group and the top five were 
reported. To further evaluate the difference between the 
global and clustering method, 𝑇"	ratios were calculated to 
show relative magnitude of responses in anomaly severity 
compared to normal operating conditions. Finally, for this 
data set, no false alarms occurred. From Table 1, it can be 
noted that for the majority of the simulated faults, the cluster 
and detect method was able to either find the fault more 

quickly (time), with a greater surety (larger 𝑇" ratio), or in 
a more accurate location (cluster source) that the traditional 
global PCA method.  

Conclusions 

PCA is widely used to transform original process tags 
to reduced dimensions of principal components to perform 
fault detection with the use of Hotelling’s 𝑇"statistic. 
However, a new method is proposed that applies a 
clustering algorithm to group the process sensors into 
several groups before the PCA is performed to simplify the 
complexity and give operators specific locations that isolate 
the root causes for the fault. The algorithm was able to 
create ten individual clusters with high correlation within 
the group and extremely low with the other groups. With 
this clustering pre-fault detection, not only did this method 
show potential to find faults at a quicker rate, but also 
increase accuracy and speed in finding the source of the 
faults in a way that is bereft of the dismantling effects of 
contribution smearing. 
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Fault Information Global PCA Results Cluster and Detect Results 
Fault 

# 
 

Fault Name Associated 
Equipment 

Original 
Source 

Global 
Time 

Global 
Contribution 

Source 

Global 
𝑻𝟐 

Ratio 

Cluster 
Time 

Cluster 
Source 

Cluster 
Contribution 

Source 

Cluster 
𝑻𝟐 

Ratio 

1 Concentration 
Step PFR 1 RX401BCC4PV 17 

RX401BQPV 
RX401BCC5PV 
RX401AT1PV 

RX401CCD3PV 
RX401BT1PV 

9.73 17 RX401 

RX401BCC4PV 
RX401ACC4PV 
RX401ACC3PV 
RX401ACD5PV 
RX401ACC5PV 

67.05 

2 Heater Failure CSTR 3 RX103QPV 17 

RX101CBFPV 
HX103BTBPV 
FT202FCPV 
HX401TCPV 
RX102CAPV 

72.61 45 RX103 
 

RX103TRSP 
RX103CCSP 

HX103ATA1PV 
RX103TRPV 
RX103QPV 

2,143.96 

3 Reflux Valve 
Stuck DC 1 DC601FRPV 15 

RX104CAPV 
TK501TPV 

RX104CBPV 
RX103TRPV 
TK303LPV 

465.01 15 DC601 (First 
Family) 

DC601XC1PV 
DC601XC3PV 
DC601FRPV 
DC601FVPV 
DC601QPV 

527.31 

4 Gradual 
Fouling CSTR 1 UA (HX101A) 1192 

HX103ATAPV 
FT204CBPV 
FT203FCPV 

HX102ATAPV 
FT204CCPV 

1.72 688 HX101 

HX101BTB1PV 
HX101ATA1PV    
HX101BTCPV 
RX101CCSP 
RX101TRSP 

16.12 

Table 1. Results of cluster and detect method and traditional global PCA method for simulated faults 


