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Abstract Overview 

Chemical manufacturing processes operate under a number of disturbances. Automatic control systems 

are usually able to counter these disturbances. Process faults are large changes that result when control 

system compensation is inadequate to mitigate the disturbance. It is therefore important to develop process 

monitoring systems to ensure process safety, reliability and product quality by effectively detecting and 

identifying the faults. In this paper, a novel probabilistic fault detection and identification approach is 

proposed which adopts a recently developed Bayesian recurrent neural network (BRNN) model using 

dropout. Compared to traditional statistic-based data-driven fault detection and identification methods, the 

BRNN-based method can model nonlinear system dynamics and, most importantly, yields uncertainty 

estimates which allows simultaneous fault detection, direct fault identification, and fault propagation 

analysis of chemical processes. The performance of BRNN for fault detection and identification is 

demonstrated and compared to the industry-wide applied (dynamic) principal component analysis in the 

benchmark Tennessee Eastman (TE) process and a real chemical manufacturing dataset. 
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Introduction

In industrial chemical manufacturing process, a fault is 

defined as any abnormal deviation from the normal 

operating condition (NOC). Effective fault detection and 

identification are important steps for making appropriate 

maintenance decisions and significantly reduce the time to 

recover to the NOC. Toward that end, data-driven methods 

for fault detection and identification have dominated the 

literature for the past decade and have been widely applied 

in practice (Chiang et al., 2000). 

For fault detection, statistical multivariate data-driven 

methods, such as principal component analysis (PCA), have 

been shown to have good detection accuracy (Chiang et al., 

2000; Qin, 2012). However, PCA has an implicit 

assumption that the measurements are independent in time 
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and that the system variables are linearly correlated. To 

characterize the temporal correlations from the system’s 

dynamics, dynamic principal component analysis (DPCA) 

has been developed (Ku et al., 1995). A limitation of this 

approach is the linearity of the ARX model for the 

description of dynamic processes. For systems with 

nonlinear NOC dynamics, different nonlinear PCA 

extensions have been proposed (Dong, 1996; Lee, 2004) but 

those methods assume independent measurements.  

For fault identification, PCA-based contribution plots 

(Westerhuis et al., 2000) are one of the most popular 

techniques for determining the variables that are most 

strongly associated with the faults. However, the above-

mentioned limitations with PCA-based approaches will also 



  

 

 

be reflected in the identification procedure. Moreover, those 

methods provide only indirect information on the severity 

to each affected variable. 

Apart from traditional statistical methods, data-driven 

methods based on neural networks (NNs) have recently 

received significant attention due to their capability and 

flexibility for modeling complex and nonlinear systems. 

Two fault detection schemes are generally proposed within 

the NN framework: (1) NNs are used as a classification tool 

when prior knowledge about the normal and faulty 

conditions are available (Chine et al., 2016; Zarei et al., 

2014; Zhang and Zhao, 2017; Wu and Zhao, 2018); This 

approach, however, is only effective when there is extensive 

training data of the faulty conditions; (2) NNs are used to 

model input-output relationships during normal operating 

condition (Nie et al., 2018; Wang et al., 2017). However, it 

is often difficult to figure out the exact input and output 

variables due to the closed-loop controllers and this 

approach only focuses on the residual of the output 

variables, whereas deviations in input variables induced by 

faults are also crucial to the process. Fault identification 

occur naturally in the first scheme, but it is limited by the 

fault conditions and data available during training, and it 

has not been properly addressed in the second scheme. In 

addition, NN-based models must be properly regularized to 

prevent overfitting and ensure good generalization. 

In this paper, we propose a fault detection and 

identification method which adopts recently developed 

Bayesian recurrent neural networks (BRNNs) by dropout 

(Gal and Ghahramani, 2016). BRNNs are principled models 

to obtain uncertainty estimation for complex models with 

nonlinear dynamics. In particular, the BRNN with dropout 

is utilized due to its simplicity, regularization capability, 

strong generalization ability, and scalability. To the best of 

our knowledge, this is the first time the BRNN has been 

successfully applied to fault detection and identification. 

The proposed probabilistic approach enables sensitive and 

robust fault detection and identification with easily 

interpretable visualizations to the plant operators, which 

enables quick fault type categorization, and analysis of the 

possible fault propagation path and root cause using 

engineering judgement. 

Results and Discussion 

The proposed BRNN based monitoring framework was 

applied to the Tennessee Eastman (TE) process (Downs and 

Vogel, 1993). As an example, two BRNN model output 

variables (XMEAS 1 and XMEAS 16) for Fault 1 are shown 

in Figure 1. The dark blue lines are the real data and the 

light blue lines are predictive distribution by BRNN model 

with 400 repetitions via dropout. The fault alarm is 

triggered when the real measurements are outside the light 

blue band and Fault 1 is accurately detected by the proposed 

BRNN system. 

 

Figure 1.  Scaled BRNN model outputs for TE 

process Fault 1 XMEAS(1) & (16). Dark blue 

lines are real measurements and light blue 

lines are BRNN predictive distributions under 

NOC. 

Figure 2.  Fault identification plot by BRNN 

for TE process Fault 1. 

The identification plot by BRNN is shown in Figure 2, 

which shows the number of standard deviation of a variable 

from its normal predictive distribution (Zhu and Braatz, 

2014). The variables that are affected by the disturbance can 

be clearly identified from the plot. At first a large number 

of variables are affected by the fault but, after the 400th time 

point, variables with oscillation behavior are either back to 

normal or move to a new steady state.  

Useful insights can be obtained from the identification 

plot: variables that are most significantly affected by Fault 1 

are XMEAS(1) and XMV(3), which are the sensor 

measurements of A feed flow and the manipulate variable 

of A feed flow, respectively. Both variables are positively 

deviated from the NOC region. XMEAS(4), which is the 

total feed flow rate of Stream 4, is negatively deviated from 

the NOC region. Therefore, the possible root cause can be 

analyzed as the A component decrease in Stream 4 and A 

feed in Stream 1 is increased by the controller to 

compensate that disturbance, which agrees with the truth of 

the process. 



  

 

Conclusion 

A novel BRNN-based fault detection and identification 

system for manufacturing processes is proposed in this 

paper. The proposed method simultaneously tackles two 

key challenges in real process data: (1) concurrent spatial 

and temporal correlations and (2) nonlinearity. These 

challenging features are emblematic in the chemical 

manufacturing industry due to reaction chemistry and 

complex control systems. The BRNN framework is 

demonstrated to enable: 

(1) fault detection of chemical process with nonlinear 

dynamics, and 

(2) direct fault identification with easy visual 

interpretability and fault propagation analysis 

The proposed BRNN-based fault detection and 

identification framework can be directly applied to any 

manufacturing process with historical NOC measurements. 

The BRNN model with dropout technique yields 

uncertainty estimates, which provide an adaptive 

confidence interval. The concurrent online calculation 

capability and easy implementation of dropout to any model 

architecture make the BRNN ideally suitable for fault-

detection in large-scale industrial processes.  
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