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Abstract:  The fractionation process is a typical dynamic process, and practitioners highly pay attention 

to the quality-related abnormal in the real refining processes. In this paper, a modified dynamic PLS 

(MDPLS) modeling method and the corresponding process monitoring strategy are proposed. The main 

contributions of the proposed method are in the following. First, a clear dynamic relation is captured 

between process data and quality indices. Moreover, the process and quality space are comprehensively 

divided into dynamic quality-related subspace, static quality-unrelated subspace as well as the residual 

space for improving the performance of monitoring. Finally, the effectiveness of the proposed algorithm 

is demonstrated with the data from a real fractionation process. 
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1. INTRODUCTION 

Fluid catalysis and cracking unit (FCCU) is an important 

process for converting heavy oil fractions into more valuable 

light production in petroleum processing. Fractionation 

column is an indispensable unit that produces gasoline and 

diesel oil in fluid catalysis and cracking processes. The two 

kinds of oil are major products of FCCU. Endpoint is a 

critical quality index of gasoline and diesel. Therefore, it is 

playing a dominant role in monitoring endpoint-related faults 

with the fractionation column to help improve product quality 

and operation safety.  

The fractionation processes with multiple process variables 

are highly dynamics and correlated that make it be difficult to 

build first principles model accurately [1-3]. As a result, 

model-based process monitoring and fault diagnosis 

approaches are not applicable. Fortunately, due to the 

extensive application of distributed control system in recent 

years, a large number of valuable data with production 

process have been collected. The researchers rely on the 

available data to achieve data-based operation optimization, 

process monitoring as well as fault diagnosis [4-10]. 

Especially, multivariate statistical process monitoring 

(MSPM) is the most popularly utilized [11-15]. The principal 

component analysis (PCA), partial least squares (PLS) 

method project high-dimensional and correlated process 

variables into lower-dimensional latent space in chemical 

industry.  

As for the fractionation processes, Thomas C et al. [16] 

employed PCA method for extracting latent variables, with 

two models based on hourly and minute-by-minute for 

monitoring distillation column of FCCU. Taking into account 

the time-varying behavior, such as changes of crude oil 

property, decay of catalyst activity in reactor, operation 

transform, Alghazzawi A et al. [17] proposed a recursive 

multi-block PCA monitoring strategy which can quickly 

identify and isolate abnormality in the crude distillation unit. 

In the real industry, auto-correlation and lag cross-correlation 

or dynamics exist among large-scale process variables. 

Therefore, Gao et al. [18] proposed indiscernibility dynamic 

kernel PCA, where two parameters--the indiscernibility and 

the degree of cross are defined for reducing data dimension. 

The algorithm that can extract the dynamics is utilized to 

monitor distillation column with lower missed alarm rate than 

the conventional method. Process monitoring based on PCA 

algorithm monitors only the process variables in unique layer, 

while abnormal variability may not affect product quality, 

due to compensation from feedback control in the 

fractionation processes. Unlike PCA, the PLS method is a 

powerful approach for establishing relationships of data from 

two layers [19, 20]. PLS-based process monitoring 

approaches extract latent factors according to the maximum 

co-variance criterion via nonlinear iterative partial least 

squares algorithm [21]. The work of [22] developed an 

improved multiscale PLS method, which combined PLS 

algorithm and wavelet analysis to build the model, with using 

generalized likelihood ration (GLR) testing in the residual 

space. The monitoring performance of this approach 

outperforms than PLS-based algorithm. 

However, the above some methods only consider the static 

latent variables, which cannot capture the dynamics. Then it 

will result in high missed alarm in process monitoring. 

Although a few methods took into account the dynamics in 

terms of augmented data, which cannot make accurate 

description of the dynamic and static structure in the data. 

Therefore, in this paper, a new dynamic PLS method for 
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quality-related monitoring is proposed and applied into 

fractionation processes. The contributions of the work are in 

the following. First, the process data space is decomposed 

into dynamic quality-related and static quality-unrelated 

subspace, respectively. For quality-unrelated space, it can 

contain a few large variations that is further divided by 

performing PCA decomposition to improve the monitoring 

performance.  

The remainder of this paper is organized as follows. In 

section 2, fractionation process of FCCU is described. In 

section 3, the PLS method is reviewed briefly and a modified 

dynamic PLS approach is presented, and the corresponding 

monitoring strategy is given in later. The proposed algorithm 

is applied in the real fractionation processes in section 4. 

Finally, the conclusions are concluded and the following 

work is discussed in the section 5. 

2. FRACTIONATION PROCESS DESCRIPTION 

Fractionating column is an important unit in catalytic 

cracking processes, whose process structure diagram is 

shown in Figure 1. The high-temperature oil-gas mixture 

enters the fractionation column from column bottom, and 

then are separated several fractions according to different 

boiling temperatures. . Among them, overhead product is 

gasoline and side-lines product is diesel.  

Gasoline and diesel are the main products of FCCU. The 

endpoint is an important quality index of gasoline and diesel. 

The major process variables relevant endpoint of gasoline are 

top tower temperature, top pressure, flow of top reflux, the 

1st pump-around reflux flow, that of diesel are top pressure, 

column bottom temperature, the 1st pump-around reflux 

temperature, respectively. According to gasoline, diesel oil as 

the major fuel, endpoint of gasoline is extremely high, which 

will make it difficult to evaporate and burn the gasoline 

completely. The endpoint of diesel will affect the mobility 

under different climate conditions. Further, the endpoint also 

has an effect on product distribution in the production 

processes. 

Therefore, a great deal of researchers focus on anomalies 

monitoring of fractionation process. In the early researches, 

researchers look forward to establish first principle model for 

solving the abnormal monitoring, whereas several 

assumptions are made to simplify the model because of 

difficulties in the solution of quite complex mechanism 

model. However, the above strategy will lead to a great 

difference between the built model and the real process [15]. 

As a result, considering the above drawbacks, multivariate 

statistical process monitoring method provides a data-driven 

framework to monitor the fractionation process. The 

fractionation process is a typical dynamic process, with 

dynamic characteristics derived from the interactions among 

complex recycle reflux. Therefore, a quality related modified 

dynamic PLS monitoring method is proposed for monitoring 

the fractionation processes. 

3. A MODIFIED DYNAMIC PLS MODELING FOR 

PROCESS MONITORING  

3.1  Reviews of PLS 
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Fig.1  The flowchart around a typical fractionation column  

Collect normal process and quality data and construct inputs 
n m

 X  containing n  samples with m  variables, and 

outputs 
n p

 Y  containing n  samples with p  variables. 

Then, the scaled data is projected to low-dimensional space 

as the following PLS model [23]:   
l T T

i ii

l T T

i ii

   


  






X t p E = T P E

Y t p F = T Q F

                                  (1) 

where n l
 T  is the score matrix of inputs X , m l

 P  is 

the loading matrix of inputs X , p l
 Q is the loading 

matrix of outputs Y , l is the number of latent factors, E  and 

F are residuals for inputs and outputs, respectively. The 

detailed PLS method is described in literatures [24, 25].  

The matrix W is weight matrix of deflation matrix 

1 1

T

i i i i 
 X X t p . In order to represent i

t  in terms of 

original data X , the following equation is utilized. 

                              T X R  

where 
T 1

( )


R W P W  from [26]. 

3.2 A modified dynamic PLS (MDPLS) modelling algorithm 

Generally, both auto-correlations and cross-correlations exist 

inside real industrial data simultaneously. The above static 

PLS model cannot capture dynamics in variables. As a result, 

missed alarm rate may increase when static model is applied 

to monitor dynamic processes. In this paper, a new dynamic 

latent variable monitoring algorithm is proposed and applied 

to quality-related fault detection.  
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The explicit dynamic and static relations between variables is 

modeled by the dynamic inner PLS (DiPLS) algorithm[27]:  

                  
1 1

1 1 1
( ) ... ( )

T

T T

l l l
z z
 

  


   

X T P E

Y G t q G t q F
           (2) 

where 
1

( )
T

i i
z z


G , 
1 1

[1, , . . . ]
s

z z
  

z  describes the 

dynamic relationship between the quality data  and the 

dynamic scores i
t , 1

z
  denotes delay operator. l is the 

number of latent variables, which is obtained by cross-

validation method.   

However, the above approach focuses on building a 

regression model, rather than supply a statistical model for 

process monitoring. Further, the procedures of DiPLS 

algorithm is similar to that of PLS, thus scores T include 

variations orthogonal to Y. In order to overcome the 

aforementioned shortcomings, a modified monitoring 

strategy is proposed.  

According to DiPLS method, the predicted quality variable 

can be shown [27]:  

                 
1

ˆ ˆ =
T T T

s c s 
Y = T Q T B Q Z R B Q                          (3) 

where  1 2 1
  . . . 

T

s s
  

 
B = ,  1 2 1

  ... 
c s 
T T T T , with 

i i
T X R .  

The dynamic predictable quality variable Ŷ  is performed 

singular value decomposition as following:  

              
ˆ =

T T

d d d d d
Y L C H L Q

                                      (4) 

where d d d
Q H C  contains d

l  nonzero singular values in 

descending order and the corresponding right singular vectors.        

           1 1

1 1

ˆ T

d d d s d d s d

 

 
  L Y H C Z R B Q H C Z R          (5) 

where 
1T

d d d


R R Q H C  For the remaining static quality-

irrelevant process variables via projecting onto the 

orthogonal of Span  d



R , 
†

s d d
 X X K R ,where 

† 1
( )

T T

d d d d


R R R R . Due to the large variation in the residual 

subspace, PCA decomposition is further realized on 
s

X  with 

x
l  components 

                          
s x x x
 X T P E                                           (6) 

where x
T  is the principal component score matrix that is 

useless to predict outputs, x
E  represents residuals, 

respectively. According to the proposed MDPLS method, the 

outer model of input and output spaces are decomposed into 

the following form:  

                   

†

d

ˆ

d x x x

T T

s

   


 

X L R T P E

Y T Q F

                                    (7) 

3.3 MDPLS-Based Monitoring 

Given a new sample n ew
x , it can be calculated as follows: 

                         
T

d d n e w
t R x  

                         
T

x x s
t P x  

                   
( )

x x x s
 e I P P x

                                          (8) 

The score vector x
t  can be monitored via Hotelling’s 2

T  

statistic: 

                          
2 1T

x x x x
T


= t t                                                 (9) 

where x
 is the covariance of x

t . 

x
e  can be monitored via Q  statistic:  

                          
2

=  
x x

Q e                                                    (10) 

The d
t  is not time independent series, which is not suitable 

to monitor. As a consequence, it can be described as a 

stationary time series model with auto-regressive mode as 

following:  

                1
( ) ( 1) ... ( )

d d p d
t k t k t k g v k                  (11) 

where i
  is the parameters of auto-regressive model, g is  

model order, it can be obtained by Bayesian Information 

Criterion. The parameters are solved by the least squares 

algorithm as following:  

                

1

1 1

ˆ
g n g n

T T

d

i g i g

i i i t i  


 

   

   
     

   
                   (12) 

where 
1

ˆ , . . .
T

g
   
 

,      1 , .. . ,
T

d d
k t k t k g     

. 

As k
v can be time independent, it can be monitored by 

statistic 
2

T
v

. 

                             
2 1T

v k v k


T v v                                           (13)  

where v
  is covariance of V , 

T

1
V [ v , .. . , v ]

n
 . 

Table 2 Monitoring statistics and control limits  

Statistic    Calculation       Control limit 

2

x
T           

1T

x x x


t t          

2

, ;

( 1)

( )
x x

x

l n l

x

l n
F

n n l




  

2

v
T           

1T

k v k


v v        

2

, ;

( 1)

( )
d d

d

l n l

d

l n
F

n n l




  

x
Q            

2

x
e

          
2

( / 2 ) ( 2 / )
x x x x

S S    

In this paper, the monitoring statistics and corresponding 

control limits are listed in the Table 2. Among them, where 

,
d x

l l  are the number of the latent variables, n  is the number 

of training samples, , ;
d d

l n l
F

  indicates F -distribution with 

,
d d

l n l degrees of freedom under  confidence coefficient. 
2

( 2 / )
x x

S   represents 
2

 -distribution with 2 ,
x x

S degrees 

of freedom, where x
S  means the variance of the training 

samples, and x
  represents mean of training samples, 

respectively [28, 29].  

 

4. THE SCENARIO STUDIES IN QUALITY RELATED 

MONITORING OF FRACTIONATION PROCESSES 

This section applies the proposed MDPLS method to 

endpoint relevant monitoring in fractionation processes. The 

collected data contain 28 process variables and 2 quality 

variables (endpoint of gasoline and endpoint of diesel). In 

this paper, a number of 600 samples were collected, of which 
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300 samples under fault-free condition, and additional 300 

samples under fault condition. The prediction performance of 

two quality variables with PLS and dynamic PLS can be seen 

in the Fig. 3 and Fig. 4, respectively. The dominant process 

variables are shown in the Fig. 5. It is obvious that the 

dynamic PLS have better prediction accuracy than PLS. 
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Fig.3.   Quality prediction of PLS 
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Fig.4   Quality prediction of dynamic PLS 
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Fig.5   The original dominant process variables 

To demonstrate the effectiveness of the algorithm, quality 

related faults 1 and faults 2 are modeled and monitored, 

comparing with conventional dynamic PLS (DPLS) methods. 

In the fractionation processes, 1st pump-around flowrate and 

the top tower pressure with too low are common faults. The 

former (fault 1) can lead to a higher temperature with the top 

and middle of the fractionating column, even further lead to 

the phenomenon of punching column, which will make the 

endpoint of gasoline and diesel rise, and also affect the heat 

source supply for the downstream devices. The latter (fault 2) 

will also have impact on the product quality.  

The monitoring performance with traditional DPLS and the 

MDPLS under fault scenario 1 is described in Fig.6. It is seen 

from 
2

v
T  statistic with Fig.6 (b) that the endpoint relevant 

fault is detected precisely from the 183th to 267th sample and 

have a trending of returning to the normal condition after the 

267th samples because of the closed-loop controller to 

decrease the impact of the fault on process. Nevertheless, the 
2

T  statistic from Fig.6 (a) cannot detect the influence of 

feedback control on quality indexes, which still above the 

control limit after the 267th sample considering as the false 

alarms. Even if 
2

x
T  statistic in Fig 6 (b) above the control 

limit, which is a process-specific variation considering as 
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normal situation when concentrating on the relevant endpoint 

fault. Therefore, the effectiveness of proposed monitoring 

method is demonstrated via the above experimental results.  

When the fractionation process under fault 2 situation, the 

monitoring results with DPLS and the MDPLS algorithms are 

displayed in Fig 7(a) and Fig (b), respectively. The 
2

v
T  

statistic with Fig 7 (b) tends to exceed the control limit from 

the 145th sample, which denotes the quality-related faults can 

be dete cted successfully. However, the T statistic with DPLS 

method from Fig.7 (a) have missed alarms among 165-185, 

231-240,267-280 samples. 
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 (b)   MDPLS 

Fig. 6  Fractionation process monitoring results (faulty 1)  

Fault 2: 
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(b)   MDPLS  

Fig.7 Fractionation process monitoring results (faulty 2)    

5.  CONCLUSIONS 

This paper proposed a modified dynamic PLS quality-related 

monitoring approach for fractionation processes. It provides a 

simple implementation to achieve comprehensive monitoring. 

The effectiveness of the proposed method is illustrated by the 

application results on a real fractionation processes. The 

corresponding fault diagnosis strategy of the proposed 

monitoring scheme can be developed for localizing the faults 

in the future work.  
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