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Abstract: The state of health (SoH) of lithium-ion batteries and battery packs must be
monitored effectively to prevent failure and accidents, and to prolong the useful lifetime of
the batteries. Many studies have suggested that temperature and discharge/charge current
rate are the primary factors causing battery aging. However, due to the complex and often
poorly understood internal dynamics of lithium-ion batteries, no reliable mathematical models to
predict the battery SoH are available. In this article, we introduce two SoH prediction models: (1)
the decreasing battery V0+ model and (2) the increasing CV charge capacity model. Additionally,
we derive a simple thermal model for the cell based on variation of temperature data.
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1. INTRODUCTION

Lithium-ion battery packs are a source for major or sup-
plementary power for mobile applications such as electric
vehicles, electric scooters, and also back-up power sys-
tems of several scales. A key aspect of the technology
is their proprietary Battery Management Systems (BMS)
that monitor the battery pack to maintain safe operation
during charging and use, and allow some performance
optimization. Such systems have a component that esti-
mates the pack State of Charge (SoC), that is the amount
of charge still in the pack to deliver application power
(Tulsyan et al). The simplest SoC indicators rely on an
invariant model of the cell’s performance to yield their
output and do not take into account how a pack is changing
over time. However, in reality the performance of batteries
decreases over time and with use, described as a change in
the battery’s State of Health (SoH).

In recent years, a lot of attention has been focused on the
diagnosis of lithium-ion battery SoH. Nearly all literature
regard discharge/charge current rate and temperature as
top factors affecting SoH. However, a concrete mathemati-
cal model which can connect these two factors to battery’s
SoH is still not available to authors’ best knowledge.

In this study, batteries are discharged and charged over
many cycles, while their voltage, capacity, current, and
temperature profiles are recorded. Based on the data
collected and analyzed, two models that can potentially
predict battery SoH are presented.

2. EXPERIMENTAL

Cylindrical 18650 lithium-ion rechargeable cells (Pana-
sonic NCR18650B, Figure 1) of Lithium Nickel Cobalt
Aluminum Oxide (LiNiCoAlO2) chemistry are tested in

this work. The nominal cell voltage and capacity are 3.6V
and 3.2Ah, respectively. The manufacturer recommended
charge/discharge voltage boundaries are between 2.5 and
4.2V.

Fig. 1. Panasonics NCR18650B Lithium-ion Batteries

2.1 Galvanostatic cycling of single battery cells

Galvanostatic cycling is performed under room temper-
ature within the manufacturer specified voltage range of
2.5-4.2V. Each cycle consists of six stages:

1. Constant current discharge at 1C, or 3.2A, until
voltage reaches 2.5V

2. Open circuit voltage (OCV, 30 minutes)
3. Constant current charge at 1C until voltage reaches

4.2V
4. OCV (30 minutes)
5. Constant voltage charge at 4.2V for 4 hours
6. OCV (30 minutes)

A potentiostat (10A, VMP3 multi-channel potentiostat,
BioLogic Science Instruments) was used to perform the
discharge/charge cycles. Between each discharge/charge
steps, the cell was relaxed for 30 minutes and the cell
potential was recorded. Temperature of the cell during
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cycling was recorded by self-adhesive (silicon based ce-
ment) K-type thermocouple temperature sensors (SA1-
K-72, Omega Engineering Inc.) with better than 0.3 s
response time. Two thermocouples were used: one attached
to the main body of the cell and one attached to the
anode tip of the cell. The cover of the cell was care-
fully removed where the self-adhesive thermocouple was
attached. Temperature data were recorded by a high-speed
8-channel TCIC thermocouple interface card (TCIC-USB-
ENC, Omega Engineering Inc.)

Figure 2 shows a typical current and voltage profile of the
batteries for one discharge/charge cycle. During constant
current discharging, the current is denoted as a nega-
tive value and the voltage decreases non-linearly until it
reaches the cut-off voltage (2.5V). During constant current
charge, the current is held constant with a rising voltage
until the voltage reaches the maximum charging voltage
(4.2V), at which point constant voltage charge begins.

In the experiment presented here, 101 cycles of battery
current, voltage, and capacity are recorded. The first 31
cycles also have their temperature profile recorded.

Fig. 2. Discharge/Charge Current and Voltage Profile

3. RESULTS AND DISCUSSION

3.1 Voltage vs. Capacity Plots

Voltage vs. Capacity plots give crude estimation of battery
degradation. As a battery is cycled, the charge decreases,
indicating a loss of energy. Thus a leftward shift of voltage
vs. capacity curves is expected.

Figure 3 shows voltage vs. capacity curves. Notice that
both discharge and charge curves illustrate similar pattern:
they move to the left over time, indicating that the
capacity, or the amount of charge the battery is able to
hold, decreases as it is cycled.

Figure 4 shows the battery temperature vs. time. Notice
that there are relatively large room temperature fluctua-
tions during the cycling processes.

Fig. 3. Voltage vs. Capacity curves for a) constant current
discharge and b) constant current charge

4. SOH PREDICTION MODEL

Present models of SoH prediction are based on large
amounts of battery operation data. However, even the
most sophisticated BMS has very limited data storage.
Based on the assumption that voltage vs. capacity curves
follow a similar pattern for varying discharge rates, the
model presented in this section attempts to achieve the
goal of SoH prediction through only a short history of bat-
tery operation, which makes BMS implementation highly
feasible. Specifically, this model, given merely the voltage
and percentage of charge drawn from the battery dur-
ing discharging, attempts to predict the number of dis-
charge/charge cycles the battery has performed through,
a natural indicator of battery SoH.

4.1 SoH prediction based on decreasing V0+

Let γ denote the cycle number a battery has been dis-
charged/charged through. Let V0+ be the voltage at the
beginning of discharge (see Figure 2), with it a function of
cycle number

V0+ = V0+(γ) (1)
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Fig. 4. Battery Temperature vs. Cycles

Recall that as the battery is cycled, the amount of charge
it is able to hold decreases. Therefore, we expect V0+ to
decrease as battery ages, shown in Figure 5. This property
alone can be an indicator of battery SoH.

Fig. 5. V0+ vs. Cycle Number - with linear fit

Performing linear regression, we obtain the function

V0+(γ) = β0 + β1γ (2)

The linear fit superimposed on the data points as shown
on the same figure. The values of β0 and β1 are listed in
the table below

β0 3.7831
β1 −0.0006

Here, β0 represents the V0+ (V ) of a new battery which
has not gone through any discharge/charge cycles, while
β1 represents the rate of V0+ decrease with respect to cycle
number (Vγ ).

4.2 SoH prediction based on increasing CV charging
capacity

In real applications, constant current discharge/charge
cannot be expected. For example, the driver of an electrical
vehicle may accelerate for a few seconds, drawing a large
current, followed by an immediate deceleration drawing a
small current. However, the constant voltage charge (stage
5 in this study) is relatively much more consistent if it is
run to completion, at the end of charging in an off duty
period, for example. Therefore, measuring the change in
capacity during constant voltage charge as a function of
cycle number is another way to assess the SoH of the
battery. This is shown in Figure 6.

Fig. 6. Capacity vs. Cycle Number for constant voltage
charge

Figure 6 shows that the capacity during constant voltage
charge increases with cycle number, which is expected
since as battery ages, the resistance increases and so the
constant current charge reaches the cutoff voltage faster.

5. TEMPERATURE PROFILE MODELING

We now analyze the temperature profiles recorded and fit
parameters to a simple thermal model.

5.1 Temperature profile revisited

Figure 7 shows the close-up of the constant current dis-
charge and OCV part of the temperature profile for each
cycle. Here the rising temperature from 0 to 1 hour is
caused by constant current discharge stage, whereas the
temperature decrease to ambient from 1 to 1.8 hour repre-
sents the OCV stage. The linear trend in temperature has
been removed to reduce the effect of room temperature
variations.

The temperature profiles for all cycles are averaged and
plotted in Figure 8. Decreasing of temperature in an
exponential decay form suggests Newton’s law of cooling,
which can be modelled by

∂T

∂t
= −k(T − Troom) (3)

where k is a constant to be fitted.

The rising temperature, on the other hand, begins to
show a plateau at approximately 0.6 hour (expected if the
heat generation was constant in time), but experiences an
inflection point and then increases sharply until constant
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Fig. 7. Temperature (normalized) vs. Time for CCD and
OCV

Fig. 8. Average Temperature (normalized) vs. Time for
CCD and OCV

current charge is over at 1 hour. This suggests that there is
an increasing volumetric heat generation term, g(t), during
discharge, as expected.

∂T

∂t
= −k(T − Troom) + cg(t) (4)

where k is the same constant as above, and c is another
constant to be fitted. The inverse of c is the average
thermal capacity of the cell.

According to Torchio et al., this heat generation term
originates from volumetric heating of the battery and has
the form

g(t) =
I(IR+ η)

πr2H
(5)

where I is the current, R is the effective resistance, η is the
overpotential, and r and h are radius and height of the cell,
respectively. The denominator is the volume of the cell.

Decoupling the resistance from the overpotential is chal-
lenging from this set of data. We consider the average of
the voltage difference from 1C charge and discharge in
Figure 9. The difference, divided by 2, is relatively constant

in discharge capacity initially. Thus, we consider the initial
(Vcc − Vd)/2I as the effective “resistance” R. Note that in
Figure 9, the discharge capacity fraction begins at 0.4: as
the cell charges, constant voltage charge begins when the
cell voltage reaches 4.2V and the remaining charge per-
centage is added in a way that is not directly comparable
to discharge.

Fig. 9. Average (Vcc − Vd)/2 vs. Normalized Capacity

Although there is an overpotential for both charge and
discharge, we ascribe the overpotential η in equation 7 to
predominantly the discharge, thus

IR+ η =

{
(Vcc − Vd)∗/2 θ < θ∗
Vcc − Vd − (Vcc − Vd)∗/2 θ > θ∗

where θ∗ is the capacity at which constant current charge
changes to constant voltage charge (θ∗ ≈ 0.4 as shown in
Figure 9), and (Vcc − Vd)∗/2 is the value of the voltage
difference at this capacity (the left hand value on Figure
9)

5.2 Temperature fitting

The solution to equation (5) is

T (t) = Ti + (Tm − Ti)e
k(tm−t) (6)

And the solution to equation (6) is

T (t) = Ti + c

∫ t

0

g(s)ek(s−t)ds (7)

where ti and Ti are the starting time and temperature of
the rising temperature part, and tm and Tm are the time
and temperature of the decreasing temperature part.

By minimizing residuals to (8) and to numerical calcula-
tions of (9) to the experimental data, the values of k and
the inverse of c are obtained as

k 4.4924
1/c 1000

The quality of the fit is shown in Figure 10.

By dimensional analysis, k has units of 1
s and c has units of

J
m3k . From the results, k is simply the constant of Newton’s
law of cooling, while c is the inverse of average thermal
capacity.
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Fig. 10. Temperature Fitting for CCD and OCV

6. CONCLUSIONS

In this study, two models were proposed to predict Li-
ion battery state-of-health (SoH): 1) the decreasing bat-
tery V0+ model and 2) the increasing CV charge capac-
ity model. From the two models, battery aging is clear.
Additionally, we derive a fitted thermal model that can
be used to predict cell temperatures in other conditions.
An interesting experiment currently in progress involves
dividing the batteries into two batches: one batch is
discharged/charged under different current rates under
room temperature, whereas the other batch is thermocy-
cled using the temperature profile generated from batch
one but not discharged/charged. This experiment distin-
guishes battery aging due to cycling (discharge/charge)
from purely temperature variation.
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