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Abstract: As a typical batch process, injection molding process plays an important role in industry. This 

work focuses on the start-up process of injection molding process. Based on a deep study of the start-up 

process of injection molding process, a phase-shift sliding window modelling scheme is proposed in this 

paper for quality prediction. Firstly, to deal with the time-varying problem during the start-up process, 

sliding windows are built in the batch direction, and multiple continuous models are established to 

capture the relationship between the process variables and the quality respectively. Secondly, according 

to the operational characteristics of the plastication phase of injection molding process, a hypothesis that 

the plastication phase of the current batch has a greater impact on the quality of the next batch than the 

quality of the current batch is proposed, and the existence of this assumption is verified by the simulation 

with experimental data. Under the premise of the above assumptions, a new quality prediction scheme is 

proposed and is verified to be more accurate than the traditional methods. 
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

1. INTRODUCTION 

Batch processes are widely used today for producing higher 

value-added products to meet rapidly changing market. 

Semiconductor processing, injection molding, fermentation, 

and most bio-processes are all batch processes in nature. 

Competition and demand for consistent and high-quality 

product have spurred the development of quality-related 

researches for batch processes.  

As a typical batch process, injection molding process has 

played an important role in industry for many years. A 

typical injection molding process consists of four major 

operation phases, injection, packing-holding, plastication and 

cooling. First, molten plastic is injected into the mold, second, 

the material is packed and held in the mold under pressure, 

and at last the plastic is cooled down in the mold until the 

part becomes sufficiently rigid for ejection, during the early 

part of which plastication phase takes place in the barrel, 

where polymer is melted and conveyed to the barrel front by 

screw rotation, preparing for next cycle. 

Significant efforts have been made for the development of 

methods for quality prediction, among which, multivariate 

statistical modelling is widely used as it is derived directly 

from historical data with little prior process knowledge, and it 

has superior ability in handling high-dimensional and 

correlated process data. Multi-way partial least square 

(MPLS) (Nomikos et al. (1995)) models were first proposed 

using the whole process variables to build the model for 

quality prediction. After, critical-to-quality time periods were 

focused to enhance the prediction accuracy (Duchesne et al. 

(2000)). Considering the multiplicity of phases, phase-based 

statistical modelling methods were developed to improve the 

performances of process analysis and quality control, and 

after that many works have been done (Lu et al. (2005), Zhao 

et al. (2008), Ge et al. (2014), Zhao et al. (2014a)). Recently, 

based on the understanding that previous phases may have 

influence on the following phases as well as the final process 

qualities, all the critical-to-quality phases were connected by 

the regression residuals of the phase-based recursions in the 

quality-regression modelling (Zhao et al. (2017)), which is 

called a phase-based recursive statistical quality regression 

method. 

Besides the process variation along the time direction within 

a batch, the process variation along the batch direction within 

a whole process has also drawn researchers’ attention. In 

batch processes, the process variation in the batch direction 

throughout the whole operation leads to different process 

states with different process characteristics. Some techniques 

have been proposed to handle process variations by model 

adaptation (Lee et al. (2003), Lee et al. (2005)). The batch 

process can be divided into different periods of which the 

process characteristics are constant and time-varying, 

respectively. In the slow time-varying batch process, the 

relationship between the batch process variables and the 

quality variables is not basically the same all the time, but 

varies as the batch operation progresses or process 

mechanism characteristic changes (Zhao et al. (2014b)). 

Distant batches have different process variable trajectories, 

operating patterns, and correlation characteristics. In the start-

up process of injection molding processes, the variation is 

serious and difficult to analyze. However, few works have 

been done focused on the start-up process. To deal with this, 

a natural idea is to divide the whole batch operation into 

various windows. Each window obtains a series of 

continuous batches. Then those different models respectively 

analyze the potential essential characteristics. Therefore, 

sliding windows are built in the batch direction, and multiple 
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continuous models are established to capture the relationship 

between the process variables and the quality respectively. 

Moreover, in traditional phase-based modelling methods for 

batch processes, phases within a batch are analyzed together 

with the corresponding quality of the batch to find out how 

the process variables of the phases influence the final quality.  

Although many modelling strategies have been proposed to 

solve different problems, the accordance between the process 

variables of the phases and the final quality has never been 

broken in the analysis of batch processes. However, with a 

deep understanding of batch process characteristics, it should 

be noticed that batches are successive and not necessary to be 

physically divided during a whole process, and although the 

concept of phase or batch division is helpful for operation 

and understanding, it is superficial.  As a part of the whole 

process, previous batches definitely can influence and 

provide useful information for the subsequent batches. Thus, 

it is reasonable to believe that the previous batches or phases 

may influence the quality of the subsequent batches and 

should be involved in the modelling. Further, in some batch 

processes, due to process characteristics such as process 

mechanism or time delay, the process variables of some 

certain phases may have greater impact on the quality of the 

next batch than the current batch. Particularly, for the 

injection molding process, the plasitication phase should have 

significant influence on the final quality of the next batch 

because of the physical meaning of this phase that it takes 

place in the barrel and the polymer is melted and conveyed to 

the barrel front by screw rotation, preparing for next batch 

cycle. Therefore, in this paper, based on the characteristic of 

the injection molding process, a phase-shift model 

development strategy is proposed, where the relationship 

between the process variables of previous batches and the 

quality of the current batch, and both the process variables of 

the previous and the current batch are involved in the quality 

prediction for the current batch. 

So in this paper, aiming at the start-up process of injection 

molding processes, a phase-shift sliding window modelling 

scheme is proposed. The sliding window method is used to 

divide the batches of the whole process into successive 

groups of windows in batches, and then performs quality 

analysis and prediction for each window. Furthermore, 

according to the operational characteristics of the plastication 

phase, a hypothesis of that the plastication phase of the 

current batch has a greater impact on the quality of the next 

batch than the quality of the current batch is proposed, and 

the existence of this assumption is verified according to the 

simulation with experimental data. The simulation also 

illustrates the feasibility and performance of the proposed 

algorithm. 

The rest work of this paper includes the following aspects: 

First, the proposed method is presented in Section 2, 

including critical-to-quality phase identification, sliding 

window model development, and phase-shift model 

development. In Section 3, the application of the proposed 

method to a real injection molding start-up process is 

presented and discussions are conducted based on the 

illustration results. At last, the conclusion is drawn. 

2. METHODOLOGY 

2.1 Critical-to-quality phase identification 

Due to the multi-phase characteristic, each batch cycle is 

divided into multiple phases by indicator variables. 

Knowledge of the concrete process and basic process analysis 

may be necessary to decide the indicator variables. Also, it is 

assumed the batches considered have even durations for each 

phase within different batch cycles. If not, some data 

alignment technology would be necessary to make the 

corresponding phases from different batches have the same 

number of sample points. 

If one phase has significantly contributed to the final qualities, 

a strong relationship exists between the process variables in 

this phase and the corresponding quality index. Therefore, a 

quality regression model which well reflects such relationship 

can provide good predication results. Thus, the fitness of time-

slice models has been utilized to judge if the process variables 

of each time interval have significant impact on the final 

quality in previous works (Lu et al. (2005)). The multiple 

coefficient of determination is utilized to evaluate the 

prediction precision of each time-slice model.  

In this part, first, the time-slice-based regression model is 

established and then the index is calculated to evaluate the 

prediction precision of each time-slice model. The mean of the 

index of all the time-slice models in a phase is taken as the 

magnitude of the effect of that phase. The details are 

presented below. 

First, a time-slice quality regression model is built between 

the process variables of that time slice and the final qualities. 

Batch process data are usually collected as a three-

dimensional matrix ( )
x

I J K X , where I refers to the 

number of batches, 
x

J  refers to the number of process 

variables and K refers to the sample times within each batch. 

The measurements of 
y

J  final quality variables in I batches 

are summarized into a matrix ( )
y

I JY . The variables are 

first centered and scaled across the batches. After that, the 

process data and the final qualities are denoted as 

( )
x

I J K X  and ( )
y

I JY . X  is decomposed along the 

time axis to obtain k time-slice matrices 

( ) ( 1, 2, ..., )
k x

I J k K X  . The correlation between the 

process variables and the quality variables can be extracted 

from matrices 
k

X  and Y . By applying PLS, the time-slice 

PLS model is achieved as below: 

T
( )

k k k
 X T P E                              (1) 

T
( )

k k
 Y U Q F                              (2) 

The above model can be abbreviated to the regression form 

as 

ˆ
k k k
 Y X                                   (3) 
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where 
k

T  and 
k

U  are the score matrices, 
k

P  and 
k

Q  are the 

loading matrices, E  and F  are the residual matrices, 
k

  is 

the regression parameter matrix, and 1, 2, ...,k K , K is the 

total number of time-slices. When a single quality variable 

( 1)I y  is considered, the regression model is 

ˆ
k k k
y X β                                   (4) 

where 
k
β  is the regression parameter. 

Then, the multiple coefficient of determination, 2

k
R , is 

utilized to evaluate the prediction precision of the kth time-

slice model and reflect the regression fitness of the model:  

     

2

,

2 1

2

1

ˆ( )

( )

I

i k

i

k I

i

i

y y

R

y y















                                (5) 

where 
i

y  is the measurement of the final quality of the ith 

batch, y  is the average of measurements of the final quality 

of I batches, 
,

ˆ
i k

y  is the quality prediction for the kth time-

slice in the ith phase. 2

k
R  ranges from 0 to 1. A larger 2

k
R  

indicates a better model prediction. 

Within the cth phase, the average phase 
2

R  index of phase c 

is calculated based on 2

k
R  within the phase, 

2 2

1

1 cK

c k

kc

R R
K 

                                     (6) 

where 
c

K  is the number of the time intervals within phase c. 

2.2 Sliding window model development 

In this part, the slow time-varying batch process is divided 
into different windows along the batch direction to capture 
their different characteristics by different models reasonably. 
To achieve this, sliding window model building method is 
utilized.  

As shown in Fig. 1, the left is the process variable matrix 

( )
x

I J K X  and the right is the quality variable matrix 

( )
y

I JY . The batch direction i is from the top to the bottom, 

i=1, 2,…, I. The time direction k is from the left to the right, 

k=1, 2,…, K. The direction perpendicular to the paper 

represents the direction of variables, which is omitted in this 

figure for brevity. In view of the characteristics of the slow 

time-varying processes, it can be approximated that the 

relationship between process variables and quality variables 

is the same in the adjacent batches, while the characteristics 

of the distant batches are different. First, the length of the 

window Iw is set properly to cover enough but close batches 

within a window to obtain accurate models. Then, the 

moving distance of the sliding window, L, is determined, 

which represents how many batches the sliding window 

moves downward relative to the previous sliding window. L 

determines the total number of windows to build and should 

be decided carefully not to make the computation load too 

heavy. To ensure that all batches are included at least by one 

sliding window, the value of L should be less than Iw. 

Concretely, Window 1 consisting of Iw batches starts from the 

first batch and ends at the Iw batch. Then, the sliding window 

moves down L batches, and Window 2 is obtained. Each time 

L batches are slid through until the last batch is covered in the 

window, resulting in N windows.  

Within the nth window, a PLS model can be built between 

the process variables and the final quality variables. 

Consequently, the average phase 
2

R index can be calculated.  

It should be noticed that in Fig. 1, only one individual phase 

is considered to focus on the time-varying characteristic 

rather than the multi-phase characteristic, that is, the 

relationship between the process variables within the cth 

phase and the final quality variable is captured individually 

but the phase predictions need to be connected together when 

obtaining the final prediction. 

Quality variables YProcess variables X

k

i
Window 1Iw

L

Window 2

L

Window 3

Window N

… …

Window n

……

 

Fig. 1. Schematic diagram of sliding window model 

development. 

2.3 Phase-shift model development 

In this part, a novel modelling strategy is developed for the 

injection molding process, where one phase is shifted along 

the batch direction. The main idea is to capture the 

relationship between the process variables of a phase 

belonging to the previous batch and the final quality of the 

current batch, since that phase may have more important 

influence on the final quality than the phase belonging to the 

current phase. 

The sliding model development has been illustrated in Fig.1 

by one phase. For multiple phases, several models are built in 

a repeated way in traditional methods. In this part, in order to 
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predict the quality accurately, the corresponding relation 

between the process variables and the quality variables in the 

sliding window model can be adjusted accordingly. That is, 

the process variables of one phase belonging to the previous 

batch are shifted to the current batch and matched with the 

quality of the current batch. In Fig. 2, the phase-shift 

modelling strategy is shown. It is assumed that a batch 

process has such characteristics at phase A which needs to 

shift. Set the start time slice for this phase A to be k = a, and 

the width of the phase is d time slices. First, move the process 

variables at this phase down by one batch along the batch 

direction, so that the relationship between the process data of 

the last batch at the phase A and the quality of the current 

batch will be captured and analyzed. Then, the data which 

cannot constitute a complete batch are eliminated, and a new 

process variable matrix Xnew and quality variable matrix Ynew 

are formed. So the sliding window method in the last section 

can be used on these new matrices to build quality prediction 

model for analysing and predicting the quality. Finally, after 

building model for each phase concerned, overall quality 

prediction can be obtained based on the phase predictions.  

Process variables X Quality variables Y

k

i
Window 1Iw

L

Window 2

L

Windows 3

Window N

… …… …

�Eliminate�Eliminate

�Eliminate

�Eliminate

k=a,a+1,…,a+d-1

← phase A→

 
Fig. 2. Schematic diagram of phase-shift model development. 

3. ILLUSTRATION AND DISCUSSION 

3.1 Process description 

The proposed algorithm is illustrated by the stat-up process 

of a real injection molding processes. All key process 

conditions can be online measured by their corresponding 

transducers. One dimension index, weight (g) is chosen to 

evaluate the product quality since the product weight is a 

direct index of quality defect such as flash or hollow. The 

material used in this work is high-density polyethylene 

(HDPE). Six process variables and one quality variable as 

shown in Table 1 are selected for modelling. Servo valve 1 

(SV1) and servo valve 2 (SV2) are connected to the barrel 

and injection cylinder. Critical variables are used for quality 

prediction.  

Table 1. Process variables for injection molding process 

Process No. Description Unit 

1 Nozzle temperature ℃ 

2 Screw velocity mm/s 

3 Injection cylinder pressure Bar 

4 Plastication pressure Bar 

5 SV1 opening % 

6 SV2 opening % 

Quality No. Description Unit 

1 Weight g 

 

3.2 Phase division and sliding window parameter selection 

As introduced before, phase division is implemented to 

divide a batch cycle into phases. Using indicator variables, 

each batch cycle can be divided into four phases. The process 

variables, screw velocity and SV1 opening are chosen to be 

indicator variables based on process knowledge. When the 

value of screw velocity is greater than zero, it means the 

screw moves forward, revealing the starting of one batch 

cycle. Meanwhile, SV1 opening can be used to indicate the 

end of the main part of a batch cycle. Screw velocity can 

indicate the switch points of phases. In Fig. 3, the phase 

division results are shown where the four phases (I–IV), 

injection, packing-holding, plastication and cooling, are 

separated from each other. 

 

Fig. 3. Final results of phase division within a batch cycle. 

In this paper, we set the width of the sliding window Iw = 20, 

the number of batches that slide down each time is L = 1. 

According to the number of batches obtained by the 

experiment I = 100, the total number of windows is N = 81. 

3.3 Critical-to-quality phase identification 

After window division, in each window, the time-slice-based 

model is established and then 
2

R  index is calculated to 

identify the contribution of each time-slice to the quality. 

Calculate the mean of the indexes in each phase. Three of 

these windows are selected and shown in Fig. 4.  

As can be seen from the figures, in each window the mean 

values of 2
R  within the four phases are different, so the 

contribution rate shows a phase characteristic change. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. R
2
 index of different windows. 

3.4 Online quality prediction 

In the third phase of the injection molding process, namely 

plastication phase, melt fluid in the screw was not fully into 

the casting mold during the current batch. There is a large 

part of the material gathered in the screw waiting for the next 

batch of mold injection. Naturally, it can be assumed that the 

impact of this phase on the quality of the next batch will be 

greater than the current batch. 

Two sliding window models are utilized to calculate the 

multiple coefficient of determination 2

c
R to show the 

influence of the plastication phase on the quality of the 

current batch (case 1) and the next batch (case 2). Two 

groups of windows, window 35 and 75 are selected to show 

the comparison, as shown in Fig. 5. In Table 2, the mean 2

c
R  

of the two cases are compared, represented by the two sets of 

windows and all windows. It can be seen that the mean 2

c
R  of 

case 2 are higher than corresponding ones of case 1, which 

means that the influence of the plastication phase on the next 

batch is greater than that on the current batch. 

Fig. 6 is the results of quality prediction of three types of 

methods, the traditional method without sliding windows, the 

sliding window method without phase-shift, and the proposed 

phase-shift sliding window method. Among them, the solid 

line is the measurement of quality, and the dotted line is the 

predictive value of quality. In addition, the root mean square 

error (RMSE) between the predicted and actual values of the 

quality is calculated as shown in Table 3. Obviously, the 

RMSE of the two methods using the sliding window method 

is much smaller than that of the traditional method without 

batch division. And for the characteristics of the plastication 

phase, the improved new sliding window method has the 

least RMSE. Therefore, it can be concluded that the proposed 

method is better than the traditional PLS methods. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Contrast diagram of the influence of the plastication 

phase. 
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Table 2. Comparison of mean 2

c
R  of plastication phase 

Window  
Current 

Batch 

Next 

Batch 

35 0.7473 0.7903 

75 0.2765 0.3926 

all 0.6611 0.6823 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Final quality prediction results for test batches. 

Table 3. Comparison of RMSE of the three methods 

Method RMSE 

Traditional 0.0150 

Sliding window 0.0066 

New sliding window 0.0059 

4. CONCLUSION 

In this paper, a phase-shift sliding window model is 

established based on the characteristics of the start-up process 

of injection molding processes. The sliding window model is 

used to capture the time-varying characteristics along the 

batch direction. In addition, according to the characteristic of 

the plastication phase that the variable impact on the quality 

of the next batch is greater than the quality of the current 

batch, a phase-shift modelling method is proposed. In the 

application to a real injection molding process, it is verified 

that the proposed method is more accurate than traditional 

methods. The obtained prediction result will be used for self-

regulation of the process, which is the work in the future. 
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