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Abstract: In this paper, a novel dynamic-inner canonical correlation analysis (DiCCA)
algorithm is proposed to extract dynamic components from high dimensional dynamic data.
DiCCA extracts latent variables with descending dynamics, which are referred to as principal
time series. Since DiCCA enables the principal time series to have maximal predictability, the
most important dynamic features in the data are guaranteed to be extracted first. Therefore,
usually a lower dimensional principal time series are able to provide good representation of the
dynamic features, leading to the ease of interpretation and visualization. A case study on the
Eastman plant-wide oscillating dataset demonstrates the effectiveness of the proposed method.
Combined with Granger causality analysis, major oscillatory latent dynamics are analyzed,
identified, and localized to equipment malfunctions.

Keywords: latent dynamic model, dynamic data modeling, Granger causality analysis, root
cause diagnosis

1. INTRODUCTION

Data collected from industrial processes are often high
dimensional, highly cross-correlated, and highly auto-
correlated. Such data can be represented with a lower
dimensional latent model, which extracts these major
cross-correlations and/or auto-correlations, leaving only
insignificant noise in the residuals. Principal component
analysis (PCA) is a latent variable modeling method that
has been widely used for static data modeling (Jackson
(2005); Joe Qin (2003)). It projects the original data onto
a lower dimensional subspace such that the projections,
which are also called latent variables, capture maximal
variance in the data. In this way, the original high dimen-
sional data can be represented by a set of lower dimen-
sional latent variables, which makes PCA a useful dimen-
sion reduction method. However, even though PCA is an
effective latent variable modeling and dimension reduction
tool for static data modeling, it is not appropriate to apply
it on dynamic data. This is because for dynamic data, the
future data can be partially predicted by the past data.
Directly applying PCA to dynamic data cannot guarantee
that this predictability is preserved in the latent variables.

Although consecutive samples are not necessary for static
data modeling, they are usually required for dynamic data
modeling due to time dependence. Therefore, dynamic
data can also be viewed as time series data. To model
the dynamic data or time series data, several dynamic
PCA algorithms have been proposed. A straightforward

extension was proposed by Ku et al. where a number of
lagged measurements are included in the data matrix (Ku
et al. (1995)). Static PCA is performed on the augmented
data matrix to extract latent variables. The drawback
of the proposed method is that static components and
dynamic components are mixed together in the extracted
latent variables, which fails to guarantee that the latent
variables are predictable from their past values. In addi-
tion, the number of latent variables can be greater than
the number of original variables, which makes it not a
dimension reduction tool.

Another structured dynamic PCA algorithm was proposed
by Li et al. where the variance of a weighted sum of
lagged latent variables is maximized (Li et al. (2014)).
Although this method preserves the dimension reduction
feature, static relationship can dominate a latent variable.
Therefore, such latent variable can fail to capture the
dynamic components in the data, which means the latent
variable does not have the predictability feature.

Recently, Dong and Qin (2017) proposed a DiPCA algo-
rithm where the latent variables are extracted to have
the highest covariance with their predictions from the
past. The latent variables extracted by DiPCA preserves
both dimension reduction and predictability features. The
disadvantage of this method is that by maximizing the co-
variance between the latent variables and their predictions,
there is a trade off between predictability and the variance
captured in the latent variables. It does not extract latent
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variables in a descending order of predictability or R2

values (coefficient of determination), which is commonly
used to asses the prediction performance.

In this paper, a DiCCA (dynamic-inner canonical correla-
tion analysis) algorithm for dynamic data or high dimen-
sional time series modeling is proposed. It extracts latent
variables such that the they have maximal correlation with
the predictions from their past values. The time series
formed by the extracted latent variables are called princi-
pal time series. Similar to DiPCA, the dimension reduction
feature is preserved in DiCCA algorithm. While DiPCA
extracts latent variables by considering both variance and
predictability, DiCCA focuses on predictability only. It is
guaranteed that the extracted latent variables or principal
time series have descending order of predictability, or R2

values. In addition, the extraction of the latent variables
and dynamic modeling of the latent variables are achieved
simultaneously by solving the DiCCA objective function.
This is an advantage of DiCCA over DiPCA.

The remainder of the paper is organized as follows. Section
2 presents the proposed DiCCA algorithm. Section 3
explores the geometric properties of DiCCA. Section 4
shows DiCCA model relations. The industrial case study
on TEP oscillating dataset in section 5 demonstrates the
effectiveness of the proposed DiCCA modeling algorithm.
Section 6 gives conclusions.

2. DYNAMIC-INNER CANONICAL CORRELATION
ANALYSIS

2.1 DiCCA Objective

Let xk denote a sample vector of m variables at time k,
and assume the latent variable tk is a linear combination
of the original variables

tk = xTkw (1)

We wish to represent the dynamics of xk in tk. This is
done by ensuring that tk is correlated to its past values as
much as possible. In general, the prediction of tk from its
past can be represented by an auto-regressive (AR) model
as

tk = β1tk−1 + · · ·+ βstk−s + rk
where s is the dynamic order of the AR model. For a more
general auto-regressive moving average (ARMA) model
relation, it is well known that it can be well approximated
by a high order AR model. Therefore, when s is large
enough such that the residual rk is essentially white noise,
the prediction of tk from the AR model is

t̂k = β1tk−1 + · · ·+ βstk−s

= xTk−1wβ1 + · · ·+ xTk−swβs

= [xTk−1 · · · xTk−s](β ⊗w)

where β = [β1 β2 · · · βs]
T and β ⊗w is the Kronecker

product. Mathematically, we wish to ensure that tk is best
predicted by t̂k. This is done by maximizing the correlation
between tk and t̂k, which is represented as∑s+N

k=s+1 tk t̂k√∑s+N
k=s+1 t

2
k

√∑s+N
k=s+1 t̂

2
k

(2)

It can be shown that when restricting
∑s+N
k=s+1 t

2
k = 1 and∑s+N

k=s+1 t̂
2
k = 1, maximizing (2) is equivalent to minimizing∑s+N

k=s+1(tk − t̂k)2, the residual sum of squares of the
prediction model under these constraints.

Given the data matrix as

X = [x1 x2 · · · xs+N ]T

and t = Xw as the vector of latent scores, we form the
following data matrices from X,

Xi = [xi xi+1 · · · xN+i−1]T for i = 1, 2, · · · , s+ 1

Zs = [Xs Xs − 1 · · · X1]

The objective (2) can be rewritten as

wTXT
s+1(Xswβ1 + · · ·+ X1wβs)

‖Xs+1w‖ ‖Xswβ1 + · · ·+ X1wβs‖

=
wTXT

s+1Zs(β ⊗w)

‖Xs+1w‖ ‖Zs(β ⊗w)‖
(3)

which can be further simplified as the following objective
function,

max
w,β

J = wTXT
s+1Zs(β ⊗w)

s.t. ‖Xs+1w‖ = 1, ‖Zs(β ⊗w)‖ = 1
(4)

2.2 Extracting One Dynamic Component

Lagrange multipliers are applied to solve the optimization
problem in (4). Define

L= wTXT
s+1Zs(β ⊗w) +

1

2
λ1(1−wTXT

s+1Xs+1w)

+
1

2
λ2(1− (β ⊗w)TZTs Zs(β ⊗w))

using (β⊗w) = (I⊗w)β = (β⊗I)w and taking derivatives
of L with respective to β and w and set them to zero
respectively, we have

∂L

∂β
= (I⊗w)TZTsXs+1w

− λ2(I⊗w)TZTs Zs(I⊗w)β = 0 (5)

∂L

∂w
= XT

s+1Zs(β ⊗w) + (β ⊗ I)TZTsXs+1w

− λ1XT
s+1Xs+1w − λ2(β ⊗ I)TZTs Zs(β ⊗ I)w = 0

(6)

Pre-multiplying equation (5) by βT and refer to the
constraint, we have J = λ2. Pre-multiplying equation (6)
by wT and refer to the constraint, we have 2J−λ1−J = 0,
leading to λ1 = J . In addition, define

Zs(I⊗w) = [Xsw Xs−1w · · · X1w] = [ts · · · t1] , Ts

Zs(β ⊗ I) =

s∑
i=1

βiXs−i+1 , Xβ

(6) and (5) can be rewritten as

TT
sXs+1w = JTT

s Tsβ

XT
s+1Xβw + XT

βXs+1w = JXT
s+1Xs+1w + JXT

βXβw
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which can be further simplified as

(TT
s Ts)

−1TT
sXs+1w = Jβ (7)

(XT
s+1Xs+1 + XT

βXβ)+(XT
s+1Xβ + XT

βXs+1)w = Jw

(8)

where the sign ()+ denotes the Moore-Penrose pseudo-
inverse. The equations (8) and (7) imply that w is the
eigenvector of (XT

s+1Xs+1+XT
βXβ)+(XT

s+1Xβ+XT
βXs+1)

corresponding to the largest eigenvalue and β is pro-
portional to the least squares solution of the AR model

parameters of time series {tk}N+s+1
k=1 . However, since Xβ

depends on β, β and w are coupled together and there
is no analytical solution to the optimization problem (4).
Using ti = Xiw, i = 1, 2, · · · , s+ 1, we have

Xβw =

s∑
i=1

βits−i+1

Eq. (8) can be reformulated as follows

Jw = (XT
s+1Xs+1+XT

βXβ)+(XT
s+1

s∑
i=1

βits−i+1+XT
β ts+1)

The following iterative algorithm is formulated to solve the
problem.

(1) Initialize w with unit vector.
(2) Calculate w,β by iterating the following relations

until convergence.

t = Xw and t := t/ ‖t‖ . Form ti for i = 1, · · · , s+ 1,

and denote Ts = [ts · · · t1]

β = (TT
s Ts)

−1TT
s ts+1

Normalize β. β := β/(tTs+1Tsβ)0.5

Xβ =

s∑
i=1

βiXs−i+1

w = (XT
s+1Xs+1 + XT

βXβ)+

(XT
s+1

s∑
i=1

βits−i+1 + XT
β ts+1)

(3) Calculate J = tTs+1

∑s
i=1 βits−i+1.

To extract the next dynamic latent variable, the same
iteration procedure can be applied to the deflated matrices
of Xs+1 and Zs, which are obtained from the deflated X
as follows,

X := X− tpT (9)

where the loading vector p is defined as

p = XT t/tT t (10)

To make the score t representing the variance captured by
the component, it is desirable to rescale p to unit norm as
follows,

t := t ‖p‖
w := w ‖p‖
p := p/ ‖p‖

2.3 Dynamic Inner Modeling

After obtaining the latent variable tk, an AR model can
be built to describe the dynamics in tk as

tk = β1tk−1 + · · ·+ βstk−s + rk (11)

where the coefficients β coincidentally is already solved in
the iterative algorithm. Therefore, there is no need to fit
another AR model.

Compared to other dynamic data modeling algorithms
such as DiPLS (Dong and Qin (2015)) and DiPCA (Dong
and Qin (2017)), where a re-estimation of β has to be
done after the outer model projection, the extraction of
the latent variables and dynamic modeling of the latent
variables are achieved simultaneously in DiCCA. This is
because DiCCA employs consistent outer modeling and
inner modeling objectives, which is a unique property of
DiCCA and makes it a more efficient dynamic modeling
algorithm than the others.

2.4 DiCCA Model with l components

DiCCA algorithm extracts latent time series one by one
with descending predictability or R2 values. After l latent
time series are extracted, the next latent time series
extracted will have a R2 value close to 0, which implies
that there are little or no dynamics left in the residuals.
The orthogonality of the latent scores guarantees that
the number of latent time series required to extract all
dynamics is fewer than the number of variables, which
will be shown later in the paper. Mathematically, by using
t(j),k to denote the jth latent score at time k, and βji
for i = 1, 2, · · · s to denote the AR coefficients for the jth

latent score, we have the prediction model for each score
as

t̂(j),k = = (βj1q
−1 + βj2q

−2 + · · ·+ βjsq
−s)t(j),k

= Gj(q
−1)t(j),k

(12)

where q−1 is the backward shift operator. By com-
bining l prediction models together, we can obtain
a prediction model for the latent score vector tk =
[t(1),k t(2),k · · · t(l),k] as

t̂k = G(q−1)tk

= diag(G1(q−1), G2(q−1), · · · , Gl(q−1))tk
(13)

3. DICCA GEOMETRIC PROPERTIES

To explore the geometric properties with j latent variables
(LV) being extracted, we use a subscript to denote the
iteration from one LV to another as follows.

X(j+1) = X(j) − t(j)p
T
j with pj = XT

(j)t(j)/t
T
(j)t(j) (14)

where the subscript j denote the quantity of the jth LV.
The following relationships among the residual matrices
and loading vectors can be proven

(1) X(j) = HX(i+1) ∀i < j
(2) X(j) = X(i+1)Z ∀i < j
(3) X(j)wi = 0 i < j

(4) XT
(j)t(i) = 0 i < j

(5) wT
i pi = 1

(6) tT(i)t(j) = 0 ∀i 6= j

(7) wT
i pj = 0 ∀i < j

(8) wT
i wj = 0 ∀i 6= j

Since the deflation step is similar to the deflation step of
PLS, the proof for all of relationships except relationship
8) are the same as the proof for PLS (Helland (1988)).
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The proof for relationship 8) is as follows. From previous
derivation, we have

(XT
(j)X(j)+XT

β(j)Xβ(j))
+(XT

(j)Xβ(j)+XT
β(j)X(j))wj = Jwj

where

Xβ(j) =

s∑
d=1

βs+1−d,jXd,(j)

Xd,(j) are sub-matrices of X(j). Due to property 3), we
have

(XT
(j)X(j) + XT

β(j)Xβ(j))wi = 0

Using the property of pseudo-inverse that ker(A)+ =
ker(A)T , ∀A, we have

(XT
(j)X(j) + XT

β(j)Xβ(j))
+wi = 0

and
wT
i (XT

(j)X(j) + XT
β(j)Xβ(j))

+ = 0

Therefore,

JwT
i wj =wT

i (XT
(j)X(j) + XT

β(j)Xβ(j))
+

(XT
(j)Xβ(j) + XT

β(j)X(j))wj = 0

Since J 6= 0, wT
i wj = 0,∀i 6= j.

4. DICCA MODEL RELATIONS

For DiCCA, having the same geometric properties as PLS
leads to a similar model structure as PLS. Assuming the
number of latent variables is chosen as l in the DiCCA
model and defining the following matrices,

T = [t(1) t(2) · · · t(l)]

W = [w1 w2 · · · wl]

P = [p1 p2 · · · pl]

By iterating (14), we have the following relations

X(l+1) = X−
l∑
i=1

t(i)p
T
i = X−TPT

or equivalently

X = X(l+1) + TPT (15)

Post-multiplying (15) by W and applying geometric prop-
erty 3), we have

XW = X(l+1)W + TPTW = TPTW

which leads to
T = XR (16)

where
R = W(PTW)−1 (17)

Therefore, for a given vector xk, the score vector can be
calculated as

tk = RTxk
and xk can be decomposed as

xk = Ptk + x̃k (18)

The decomposition as (18) gives the partition of the
space formed by current data. Furthermore, to explore the
relations between the past data and current data, relation
(13) can be utilized to derive the following relationships,

ek = xk −Pt̂k = xk −PG(q−1)tk (19)

where ek is the one step ahead prediction error. Since the
number of dynamic latent variables l is selected to extract
all the dynamics in the data, there will be little or no

dynamics remaining in ek. With static PCA modeling of
ek, we have the following complete decomposition of xk as

xk = PG(q−1)tk + Prtk,r + ek,r (20)

where tk,r are a collection of static latent variables.

In addition, since there is little or no dynamics left in ek
after the removal of the one step ahead prediction, DiCCA
can be interpreted as a dynamic whitening filter which
removes all the dynamics in the data. Mathematically,
based on (13) and (19), the dynamic whitening filter can
be written as

ek = (I−PG(q−1)RT )xk

The block diagram of DiCCA dynamic whitening filter is
shown in Fig.1.

Fig. 1. Dynamic Whitening Filter Structure

5. INDUSTRIAL CASE STUDY TO EXTRACT
OSCILLATION COMPONENTS

In this section, DiCCA modeling algorithm is performed
on an industrial dataset provided by the Advanced Con-
trol Technology Group of Eastman Chemical Company.
Fig.2 shows the process diagram. The dataset contains 60

Fig. 2. Process diagram of a plant from Eastman Chemical
Company

variables and 8640 samples with a sampling interval of 20
seconds. In addition, there is a plant wide oscillation with a
period of nearly 2h in the dataset that has been extensively
studied. Several methods have been proposed for oscilla-
tion detection (Thornhill and Hägglund (1997); Srinivasan
et al. (2007)). To identify the root cause, Thornhill et al.
(2003) proposed a non-linearity index and diagnosed the
control valve LC2 as the root cause. The plant-wide oscil-
lation disappeared after repairing the valve, which further
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confirms the root cause identified by the index. Yuan and
Qin (2014) diagnosed the same root cause and propagation
path by using Granger causality analysis.

Since oscillating signals are one of the most predictable
types of signals, it would be interesting to test DiCCA
algorithm on the TEP oscillating dataset. In our analysis
18 variables with the approximate 2h cycle oscillations
are selected as the variables for DiCCA modeling, which
are LC1.PV, LC1.OP, FC1.SP, FC1.PV, FC2.SP, FC2.PV,
TI4.PV, TC1.PV, TC1.OP, FC5.OP, FC5.PV, LC2.PV,
LC2.OP, FC8.SP, FC8.PV, TC2.OP, TI8.PV, FI3.PV. The
dynamic order s is chosen to be 28, such that the residuals
of the dynamic AR models are essentially white. All 18
latent variables are calculated, the first 3 are selected
to shown in Fig.3. From Fig.3, we can see that the first
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1st  dynamic principal component

0 100 200 300 400 500 600 700 800 900 1000
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2

4
2nd dynamic principal component

0 100 200 300 400 500 600 700 800 900 1000

-10

-5

0

5
3rd dynamic principal component

Fig. 3. First 1000 points of the first 3 dynamic principal
components

two dynamic principal components contain low frequency
oscillations only, while the third dynamic principal com-
ponent contains both low frequency oscillations and high
frequency oscillations. The low-frequency oscillation was
studied by Thornhill et al. (2003) and Yuan and Qin
(2014), with both reporting that the LC2.SP and LC2.OP
as the root cause. Yuan and Qin (2014) conducted Granger
causality to clearly identify that the LC2 control loop is
causing the low frequency oscillation. However, the high
frequency oscillations have not been studied in previously
reported work to the best of our knowledge.

To check the predictbility of each dynamic latent variable,
Fig.4 shows the bar plots of R2 and the variance captured
by each dynamic latent variable.

R2  of the AR model of each dynamic latent variable

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

Variance captured by each dynamic latent variable

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

Fig. 4. R2 and variance captured by each dynamic latent
variable

From Fig.4, we can see that the first three principal
components have similar R2 values that are very close

1. In addition, the R2 decreases monotonically as more
latent variables are extracted, which is consistent with the
objective of DiCCA. Furthermore,R2 drops below 0.2 after
13 principal components are extracted, which indicates
that no more than 13 dynamic components are required
to exhaust the dynamics in all 18 variables.

In addition, the oscillation periods of the low frequency
oscillations and high frequency oscillations can be identi-
fied based on DiCCA results. To identify the oscillation
periods of the low frequency oscillation, a fast Fourier
transformation (FFT) is performed on the first dynamic
component. Fig.5 shows the result. The period of low
frequency oscillation can be identified by the peak location
of FFT, which is -5.886 in log scale. This leads to a oscil-
lation period of 1/e−5.886 ≈ 357 sampling intervals. This
oscillation period is consistent with the previous analysis
in the literature.

−10 −8 −6 −4 −2 0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

X: −5.886
Y: 0.1677

FFT on the first dynamic principal component with log frequency

Fig. 5. FFT on the first dynamic component

To identify the period of high frequency oscillation, one
option is to apply FFT on the third dynamic component
directly. Ideally, we should be able to detect 2 peaks in
the FFT plots, one corresponding to the low frequency
oscillation and one corresponding to the high frequency
oscillation. However, in practice, the large magnitude of
low frequency oscillations and noise can cover the peak of
the high frequency oscillations, making it hard to detect.
To remove the effect of low frequency oscillations, a high
pass filter is applied to the third dynamic component first,
and FFT is performed on the filtered dynamic component.
Fig.6 shows the third dynamic component after filtering,
and Fig.7 is the FFT result.

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 6. First 1000 points of the filtered third dynamic
component

It can be seen from Fig.6 that low frequency oscillations
are successfully removed by the high pass filter. The period
of high frequency oscillation can be identified by the peak
location in Fig.7. The peak value occurs at 0.05664 in
Fig.7, corresponding to a oscillation period of 1/0.05664
≈ 18 sampling intervals, which is 6 minutes.
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Fig. 7. FFT on the filtered third dynamic component

To further analyze the root cause of the high frequency
oscillation, 25 variables containing high frequency oscil-
lations are selected from the dataset, which are TI5.PV,
TI4.PV, TC1.PV, TC1.OP, FC6.SP, FC6.PV, F6C.OP,
TI6.PV, PC2.PV, PC2.OP, LC3.PV, LC3.OP, FC5.SP,
FC5.PV, FC5.OP, FC8.SP, FC8.PV, FC8.OP, FI4.PV,
TC2.PV, TC2.OP, TI8.PV, TI7.PV, PI2.PV, FC7.OP.
Pairwise spectral Granger causality analysis is performed
on these 25 variables in the range of high frequency oscilla-
tion frequency, and Fig.8 shows causal relationships found
by selecting a threshold (threshold = 1 in this case), where
the variables in the same circle have the same causal/effect,
while variables not shown in Fig.8 have virtually no intact
cause-effect relationship with each other or with these
15 variables. It is obvious from the causality graph in

Fig. 8. Causal network by spectral Granger causality
analysis

Fig.8 that PC2.PV and PC2.OP are most likely the root
cause of high frequency oscillations among variable 1-15.
Further, the second group of variables, TC1.PV, TI6.PC
and FC5.SP are effect of the PC2 variables as they are
physically close to the PC control loop, and they further
cause other variables to oscillate. Valve stiction or too
aggressive tunning in PC2 pressure control loop is likely
the physical cause of the high frequency oscillations.

6. CONCLUSIONS

In this paper, a dynamic-inner canonical correlation anal-
ysis algorithm is proposed and analyzed for dynamic data
modeling. DiCCA extracts latent variables in a descend-
ing order of predictability, or R2 values. This guarantees
that the most dynamic component is extracted first. In
addition, it can be proven that the number of latent
variables required to extract all the dynamic components

is smaller than the number of original number of vari-
ables. Therefore, DiCCA can be used as an effective tool
to extract representative principal time series from high
dimensional time series data. After the predictable portion
is removed from the data, the prediction error will be
essentially white. Therefore, DiCCA can be interpreted as
a whitening filter, and traditional PCA can be performed
on the prediction error to further model the static com-
ponents. Case studies on Eastman plant-wide oscillating
dataset demonstrates the effectiveness of the proposed
method, where the dominating low frequency oscillating
components are extracted first. In addition, DiCCA also
discovered a high frequency oscillating components that
have not been well studied. Granger causality analysis
performed on the variables with high frequency oscillations
identified the possible root cause effectively.
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