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Abstract: Large wide-area power grids monitoring systems generate a large amount of phasor
measurement unit (PMU) data. Single variable analysis methods are often applied to the relative
phase angle difference (RPAD) between two PMU locations for event detection. However,
the possible locations of the events cannot be identified by such methods. In this paper,
dynamic-inner canonical correlation analysis (DiCCA) based discrete Fourier transform method
is proposed to detect events in the PMU data and identify the possible locations of the events.
A case study on a real PMU dataset demonstrates the effectiveness of the proposed method.
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1. INTRODUCTION

With increasingly more complex power grids and the
introduction of more distributed generations, a continuous
monitor over the power system is required to improve its
efficiency and reliability. This trend has led to a wide
application of phasor measurement units (PMU). Phasor
measurement unit is an electrical device which provides
a real-time measurement of current, voltage, frequency
and phasor angle across the power system. The electrical
quantities collected from PMUs can provide useful insights
about power system dynamics that can be used for state
estimation, disturbance monitoring, stability analysis and
event identification. In addition, the data collected by the
PMUs can be transmitted and stored at rates up to 60
times per second. Therefore, the large amounts of data
generated by PMUs can be used for comprehensive event
detection and analysis.

Among all the applications on PMU data, one important
application is disturbance detection. Various methods for
disturbance detection have been proposed. Tate (2008)
proposed a method using finite impulse response (FIR)
for transient detection. The work presented in Foruzan
et al. (2017) and Khan et al. (2015) applied detrended
fluctuation analysis for fast event detection. Negi et al.
(2017) proposed to use the computation of spectral kurto-
sis on the sum of intrinsic mode functions for event detec-
tion. As discussed in Allen et al. (2013), some important
“events of interest”, such as transmission line reclosing and
tripping can be characterized as low frequency oscillations
below 2Hz in the relative phase angle difference (RPAD)
between two PMU locations (Rogers (2012)). Therefore,

the detection of these events is equivalent to the detection
of low frequency oscillations. In addition, the purpose of
differencing the phase angles of two stations is to eliminate
common drifts or trends between them, so the sudden
oscillations in one of the stations can stand out better.

Several methods have been proposed in literatures that
perform low frequency oscillations detection. A straight-
forward way is to perform discrete Fourier transform on
RPAD pairs between all stations. To detect transient
events, DFT can be applied to a relative small window
of samples instead of the whole sequence. Low frequency
oscillations can be detected by focusing on dominant
frequency components in the range 0 ∼ 2Hz. The dis-
advantage of this method is that the number of PMU
pairs increases quadratically with the number of PMU
locations. As a result, the computational complexity will
also increase. In addition, there is no way to identify
the possible locations of the events, since two stations
have the same contribution to the corresponding RPAD.
Other methods that have been proposed to detect os-
cillations include matrix-pencil fitting, zero crossings of
the time series or autocovariance function (ACF ) (Liu
et al. (2007); Kedem and Yakowitz (1994); Thornhill et al.
(2003)). Matrix-pencil fits a sum of damped sinusoids to
the RPAD data, and the low frequency oscillations are
detected based on the significantly high value of the sinu-
soids amplitude. Zero crossings of the time series checks
the intervals between the zero crossings of a time series,
while zero crossings of ACF checks the intervals between
the zero crossings of the ACF . In both cases, the intervals
should have similar length to the oscillation period when
an oscillation exists. The advantage of ACF over the
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time series itself is that the impact of noise is reduced in
ACF method. However, all of these methods are designed
for single variable and have similar disadvantages as the
discrete Fourier transform method.

In this paper, a DiCCA based DFT method working on
multi-variables is proposed. DiCCA is applied to extract
latent dynamic variables in the multivariate time series
data. It extracts a set of lower dimensional dynamic latent
variables with descending predictabilities from a set of
higher dimensional variables (Qin and Dong (2017)). Since
oscillating components in the data are highly predictable,
they will be extracted by the first few dynamic latent
variables. Then, discrete Fourier transform is applied to
each dynamic latent variable to detect low frequency oscil-
lations, and the station that has the largest contribution
to the dynamic latent variable can be identified as the
possible location of the events.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the DiCCA method. Section 3 presents
the proposed DiCCA based discrete Fourier transform
method. The case study on real PMU dataset in Section
4 demonstrates the effectiveness of the proposed method.
Conclusions are drawn in Section 5.

2. DYNAMIC-INNER CANONICAL CORRELATION
ANALYSIS

Dynamic-inner canonical correlation analysis (DiCCA)
was proposed to model high dimensional time series data.
It extracts a set of dynamic latent variables with descend-
ing predictabilities, such that the important dynamics are
guaranteed to be extracted first.

Denote xk as a sample vector of m variables and tk as the
first dynamic latent variable at time k. The predictability
of a time series {tk, k = 1, 2, · · · , N} can be defined as the
correlation between tk and t̂k, where t̂k is the prediction
of tk from the past values and can be expressed as

t̂k = β1tk−1 + β2tk−2 + · · ·+ βstk−s (1)

Higher correlation indicates smaller angle between tk and
t̂k, which in turn indicates higher predictability. On the
other hand, lower correlation indicates larger angle be-
tween tk and t̂k, which in turn indicates lower predictabil-
ity. Therefore, the maximal predictability of tk can be
achieved by maximizing the correlation between tk and
t̂k, which can be written as

max

∑N
k=s+1 tk t̂k√∑N

k=s+1 t
2
k

√∑N
k=s+1 t̂

2
k

(2)

Denoting tk as a linear transformation of xk as

tk = xTkw,

such that

t̂k = β1tk−1 + · · ·+ βstk−s

= xTk−1wβ1 + · · ·+ xTk−swβs

= [xTk−1 · · ·xTk−s](β ⊗w)

Combining Equation (1) and (2), the objective function of
DiCCA can be presented as

max
wTXT

s+1Zs(β ⊗w)

||Xs+1w||||Zs(β ⊗w)||
(3)

where ⊗ denotes the Kronecker product, and the data
matrices are defined as

Xi = [xi xi+1 · · · xN−s−1+i]
T for i = 1, 2, · · · , s+ 1

Zs = [Xs Xs−1 · · · X1]

The weight vector w and the coefficients of the prediction
model (1) can be found by solving the objective function
(3). After extracting the first dynamic latent variable, the
data matrix X = [x1 x2 · · · xN ]T is deflated as

X := X− tpT

t = [t1 t2 · · · tN ]T

p = XT t/tT t

and the deflated Xi’s can be formed from the deflated X
accordingly. Next, the deflated data matrices are used to
extract the second dynamic latent variable. This procedure
can be repeated to extract more latent variables.

The DiCCA algorithm has several advantages. First,tThe
number of dynamic latent variables required to extract
all the dynamics in the data are guaranteed to be smaller
than the number of variables m. Second, it guarantees that
the most predictable component is extracted first. Since
oscillating components are highly predictable, DiCCA is
able to extract them in the first few latent variables. There-
fore, the analysis of the oscillations in high dimensional
time series can be transformed into the analysis of low
dimensional principal time series formed by the first few
latent variables.

3. DISCRETE FOURIER TRANSFORM BASED ON
DICCA

Discrete Fourier transform provides a frequency domain
representation of a sequence s0, s1, · · · , sN−1. The trans-
formation is defined as

Sk =

N−1∑
j=0

sje
−i2πkj/N for k = 0, 1, · · · , N − 1 (4)

In addition, the discrete Fourier transform is invertible.
Therefore, given the discrete Fourier transformation of a
sequence as S0, S1, · · · , SN−1, the original sequence can
be calculated by inverse discrete Fourier transformation
defined by

sk =
1

N

N−1∑
j=0

Sje
i2πkj/N for k = 0, 1, · · · , N − 1 (5)

Sk can be interpreted as the coefficient of the complex si-
nusoid at the corresponding frequency. Parseval’s theorem
shows that

N−1∑
k=0

|sk|2 =
1

N

N−1∑
k=0

|Sk|2 (6)

Therefore, |Sk|2 can be interpreted as the spectral density
at the corresponding frequency. If there exits a k such
that |Sk|2 is significantly higher than |Sj |2 for j 6= k,
then there are significant oscillations in the original signal
s0, s1, · · · , sN−1. Therefore, oscillations in the signals can
be detected by detecting spikes in the spectral density
functions.

Since “events of interest” in a power system can be char-
acterized as low frequency oscillations, a straightforward
method is to use discrete Fourier transform. Assume there
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are M PMU locations, then the discrete Fourier transform
method works as follows.

• Calculate M(M − 1)/2 RPAD pairs
• Perform discrete Fourier transformation on each

RPAD pair and detect spectral density spikes in the
range 0 ∼ 2Hz.
• Each detected spike corresponds to an event

Therefore, the number of discrete Fourier transformations
needs to be performed increases quadratically with the
number of PMU locations. However, even though there are
M(M−1)/2 RPAD pairs, there are only (M−1) degrees of
freedom, and the number of transformations do not match
the degrees of freedom.

We present a possible solution to this problem. Let X(k)
denote the phase angle at location k. First, we calculate the
discrete Fourier transformation of (M − 1) relative phase
angle differences of X(k)−X(k − 1), for k = 2, 3, · · · ,M .
Then the discrete Fourier transformation of the RAPD
between any 2 locations i and j, i > j can be calculated
as

DFT (X(i)−X(j)) =

i∑
k=j+1

DFT (X(k)−X(k − 1))

where DFT represents the discrete Fourier transforma-
tion.

After an event is detected, it would be desirable to find
the possible location of the event. However, the discrete
Fourier transformation cannot identify the location, since
2 stations contribute equally to the RAPD, and hence
contribute equally to the discrete Fourier transformation
results. Similarly, other oscillation detection methods work
on signal RPAD pair also have this problem and cannot
identify the possible locations of the events. To address
this problem, a oscillation detection on multivariate is
necessary to analysis the interactions among variables and
identify the possible locations of events. Therefore, the
following method is proposed for events detection and
possible location identification, which is a combination of
DiCCA and discrete Fourier transformation.

• Perform DiCCA on M(M − 1)/2 RAPD pairs and
extract l dynamic latent variables
• Perform discrete Fourier transformation on each l

dynamic latent variable and detect spectral density
spikes in the range 0 ∼ 2Hz
• For each dynamic latent variable, the PMU location

contributes most to the corresponding DiCCA load-
ing is identified as the root cause of the event.

This method has several advantages. First, DiCCA guar-
antees that the number of dynamic latent variables ex-
tracted is fewer than the degrees of freedom of the vari-
ables. Since the degrees of freedom of the M(M − 1)/2
RPAD pairs is (M−1), there are at most (M−1) dynamic
latent variables. Therefore, the number of discrete Fourier
transformation required is at most (M − 1). Second, the
magnitude of the each element in the loading vector w in-
dicates the contribution of each RPAD pair to the dynamic
latent variable, which is equivalent to the contributions of
2 PMU stations corresponding to the RPAD pair. There-
fore, it is reasonable to roughly identify the PMU station
that makes the highest contribution to the latent variable

as the possible location of the events. The effectiveness of
this method will be demonstrated in the next section.

4. CASE STUDY ON PMU DATASET

4.1 PMU Data

In this case study, we have data collected from 6 PMU
locations (Station1-Station6) downloaded from http :
//www.nrel.gov/docs/fy15osti/61664− 1.zip. The corre-
spondence between the 15 paired RPAD variables (V1-
V15) and the phase angles at 6 stations (Station1-
Station6) are summarized in Table 1. For example, V 15
is equal to the phase angle of Station1 minus the phase
angle of Station2.

There are 108,000 samples in total and the sampling rate
is 30Hz. In DiCCA modeling, the first 81,000 samples
are used as training dataset, and the last 27,000 samples
are used as testing dataset. All the 15 variables are
differentiated first to remove the direct current offset to
facilitate the detection of oscillatory events in the low
frequency range.

4.2 DiCCA Modeling Results

In DiCCA modeling, the order is selected such that there is
no dynamics in the prediction errors of the dynamic latent
variables, and the number of dynamic latent variables is
selected such that there is no dynamics in the residuals.
In this case, the order is selected as 74 and the number
of dynamic latent variable is selected as 5. The R2 values
(coefficient of the determination) of the prediction model
(1) for each dynamic latent variable are plotted in Fig.1.
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Fig. 1. R2 for the prediction model of each dynamic latent
variable in training and testing datasets

The blue bars are the R2 for each dynamic latent variable
of the training dataset, and red bars show the R2 for each
dynamic latent variable of the testing dataset. R2 gives
a measure on how good the fit is for a prediction model.
R2 closing to 0 indicates that the prediction model fits
the data poorly, and R2 closing to 1 indicates that the
prediction model fits the data well. From Fig.1, we can
see that all the R2 values are significantly above 0, which
again indicates that there are dynamics in the extracted
dynamic latent variables and the prediction model fits well.
In addition, R2 decreases monotonically for both training
and testing datasets. This agrees with the objective of
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Table 1. Correspondence between V1-V15 and Station1-Station6

Station1 Station2 Station3 Station4 Station5 Station6

Station1 -V15 -V13 -V10 -V6 -V1

Station2 V15 -V14 -V11 -V7 V2

Station3 V13 V14 -V12 -V8 -V3

Station4 V10 V11 V12 -V9 -V4

Station5 V6 V7 V8 V9 -V5

Station6 V1 V2 V3 V4 V5

DiCCA that dynamic latent variables are extracted with
descending predictability. In addition, the similar trends
between the training R2 and testing R2 indicates the
training dataset gives a good representation of the system.

Fig.2 shows the plots of loading vectors w1 ∼ w5, where
wi corresponds to the loading vector for the ith dynamic
latent variable. From the plots of the loading vectors, the
contribution of each Station to the dynamic latent vari-
ables can be identified. For example, V 5 ∼ V 9 contribute
most to the first dynamic latent variable. From Table 1,
we can see that V 5 ∼ V 9 are all in the row corresponding
to Station 5. Therefore, compared to all the other stations,
Station 5 contributes most to the first dynamic latent
variable. Similarly, we can determine the station that has
the highest contribution to the other dynamic latent vari-
ables. The results are summarized in Table 2, where DLVi
corresponds to the ith dynamic latent variable. When an

Table 2. Stations and dynamic latent variables
correspondence

DLV1 DLV2 DLV3 DLV4 DLV5

Station
with the
most con-
tribution

5 2 3 1 6

event is detected based on a dynamic latent variable, the
station with the most contribution can be identified as the
possible location of the event.

4.3 Event Detection and Localization

After DiCCA modeling, discrete Fourier transform is ap-
plied to each dynamic latent variable to detect “events
of interest”. Since some events are transient, applying
discrete Fourier transform to the entire dynamic latent
variable sequence will cause miss detection. Therefore, in
order to capture transient oscillations, discrete Fourier
transform is performed on a time window of 300 samples
(10 seconds), and the window moves every 150 samples
until the sequence ends. The maximum magnitudes in the
range 0 ∼ 2Hz for each window are saved, and the windows
with the maximum magnitudes above 3.5 standard devi-
ation from the mean are identified to have low frequency
oscillations, or the “events of interest” (Allen et al. (2013)).

Fig.3 shows the magnitudes of frequency peaks in the
range of 0 ∼ 2Hz for all time windows. The solid line
represents the mean of the peaks and dashed line repre-
sents the 3.5 of deviations above the mean. It can be seen
from Fig.3 that 5 peaks are above the the 3.5 deviation
line and are detected as events. These 5 peaks correspond
to the 223rd, 288th, 348th, 536th, 537th time window. Since
V 5 ∼ V 9 contribute most to the first dynamic latent

variable, it is suspected that oscillations exist in V 5 ∼ V 9
in these five time windows.

Fig.4 shows V 5, and the associated differentiated phase
angle at Station 5 and Station 6 in the five time windows
detected according to the first dynamic latent variable.
V 6 ∼ V 9 look similar to V 5, therefore, they are not plotted
here.

The same procedure is applied to other dynamic latent
variables to detect new events that have not been detected
by previous latent variables and identify the possible event
locations. All the windows detected with events and the
corresponding possible locations are summarized in Table
3.

Table 3. Windows detected with events and
corresponding possible location

Window number Root cause

223 Station5

258 Station1

263 Station2

269 Station3

288 Station5

348 Station5

485 Station2

536 Station5

537 Station5

It can be seen from Table 3 that most of the events
are detected in the first dynamic latent variable, which
agrees with the DiCCA objective that the most predictable
dynamic latent variable is extracted first.

5. CONCLUSIONS

In this paper, a DiCCA based discrete Fourier transfor-
mation is proposed to detect the events in the PMU data
and identify the possible locations of the events in a power
system. DiCCA first extracts a set of lower dimensional dy-
namic latent variables with dominant predictability from
the original variables. Then the discrete Fourier transfor-
mation is applied to each of the extracted dynamic latent
variable to detect events of low frequency oscillations. The
advantage of this method is that the number of discrete
Fourier transformations required is fewer than the number
of original variables. In addition, the contributions of each
PMU station to each of the extracted dynamic latent
variable can be calculated, and the station with the largest
contribution can be identified as the possible location of
the events. Both of these advantages cannot be achieved
by the methods designed for single RPAD pair, such as
the direct discrete Fourier transformation method and
matrix-pencil method. The case study on real PMU data
demonstrates the effectiveness of the proposed method.
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Fig. 2. Plots of weight vectors w1 ∼ w5

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 3. Peaks of DFT in the range 0 ∼ 2Hz for every 10-
second window for DLV 1, solid line shows the mean
of the peaks and dash line shows the 3.5 standard
deviations above the mean

AKNOWKEGEMENTS

This work was supported in part by the Natural Science
Foundation of China (61490704), the Fundamental Re-
search Program of the Shenzhen Committee on Science
and Innovations (20160207, 20170155), the Post-doctoral
Fellowship Fund of the Chinese University of Hong Kong,
Shenzhen, and the Texas-Wisconsin-California Control
Consortium.

REFERENCES

Allen, A., Santoso, S., and Muljadi, E. (2013). Algorithm
for screening phasor measurement unit data for power
system events and categories and common characteris-
tics for events seen in phasor measurement unit relative
phase-angle differences and frequency signals. Tech-

nical report, National Renewable Energy Laboratory
(NREL), Golden, CO.

Foruzan, E., Sangrody, H., Lin, J., and Sharma, D.D.
(2017). Fast sliding detrended fluctuation analysis
for online frequency-event detection in modern power
systems. In Power Symposium (NAPS), 2017 North
American, 1–6. IEEE.

Kedem, B. and Yakowitz, S. (1994). Time series analysis
by higher order crossings. IEEE press New York.

Khan, M., Ashton, P.M., Li, M., Taylor, G.A., Pisica,
I., and Liu, J. (2015). Parallel detrended fluctuation
analysis for fast event detection on massive PMU data.
IEEE Transactions on Smart Grid, 6(1), 360–368.

Liu, G., Quintero, J., and Venkatasubramanian, V.M.
(2007). Oscillation monitoring system based on wide
area synchrophasors in power systems. In Bulk Power
System Dynamics and Control-VII. Revitalizing Opera-
tional Reliability, 2007 iREP Symposium, 1–13. IEEE.

Negi, S.S., Kishor, N., Uhlen, K., and Negi, R. (2017).
Event detection and its signal characterization in PMU
data stream. IEEE Transactions on Industrial Infor-
matics, PP.

Qin, S.J. and Dong, Y. (2017). Data distillation, analytics,
and machine learning. In Proceedings of the 2017
CPC/FOCAPO, Jan. 8-12, 2017, Tuscon Arizona.

Rogers, G. (2012). Power system oscillations. Springer
Science & Business Media.

Tate, J.E. (2008). Event detection and visualization based
on phasor measurement units for improved situational
awareness. University of Illinois at Urbana-Champaign.

Thornhill, N.F., Huang, B., and Zhang, H. (2003). Detec-
tion of multiple oscillations in control loops. Journal of
Process Control, 13(1), 91–100.

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

724



Fig. 4. Plots of V 5 and related differentiated phase angles at Station 5 and Station 6
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