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Abstract: The Gaussian mixture models (GMM) is an effective tool for modeling processes
with multiple operating modes that widely exist in industrial process systems. Traditional
supervised version of GMM, namely the Gaussian mixture regression (GMR), for developing
soft sensors merely relies on the labeled samples. However, labeled samples in the soft sensor
application are usually very infrequent due to economical or technical limitations, which may
lead the GMR to unreliable parameter estimation and finally poor performance for predicting
the primary variable. To tackle this problem, a semisupervised GMM for regression purpose is
proposed, where both labeled and unlabeled samples take effect, and the Gaussian parameters
and regression coefficients are learned simultaneously based on the expectation-maximization
algorithm. Two case studies are carried out using simulated dataset and real-life dataset collected
from a primary reformer in an ammonia synthesis process, which demonstrates the effectiveness
of the proposed method.

Keywords: Soft sensor, multimode process, semisupervised Gaussian mixture models, Gaussian
mixture regression, expectation-maximization.

1. INTRODUCTION

In industrial processes, many quality-related variables
called the primary variables are measured with large delay
in the laboratory or with high price using analyzers. Soft
sensors are popular alternatives of the lab analysis or
analyser, since they are delay-free and very low-cost (Ge
et al. (2017)). As process data that reflect the true process
conditions become available, during past decades a variety
of data-driven algorithms have been applied to soft sensor
development, such as the principal component regression,
partial least squares, artificial neural networks, support
vector machines, and so forth . Extensive reviews of the
development algorithms and application surveys of soft
sensors in industrial processes can be found in (Kadlec
et al. (2009); Kano and Ogawa (2009); Ge (2017)).

Processes with multiple operating modes widely exist in
industrial process systems, which may result from multiple
product grade demands, changes in feedstocks, load vari-
ations or seasonal operations (Souza and Araújo (2014)).
Developing soft sensors for these processes needs to take
into account the characteristics of the multiple operating
modes that make the processes exhibit non-Gaussian be-
haviors. As a result, a single model may fail to perform sat-
isfactorily and multiple models accounting for each mode
are required. In addition, due to the measurement varia-
tions and transmission disturbances, industrial processes
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are inherently random processes (Yuan et al. (2017)), thus
probabilistic models are more proper to handle the uncer-
tainties compared to their deterministic counterparts.

The Gaussian mixture models (GMM) is well known to be
effective in modeling the multimode characteristics and
accounting for the process uncertainties simultaneously,
and has recently established itself as a popular tool for de-
veloping soft sensors for processes with multiple operating
conditions. The GMM-based soft sensors can be generally
categorized into two groups. In the first one, the secondary
and primary variables are separately manipulated, and the
unsupervised GMM is used for mode identification. Then
localized models are trained for each mode using regres-
sion algorithms such as the kernel partial least squares
(Yu (2012)) and Gaussian process regression (Grbić et al.
(2013)). In the other group, the supervised GMM, namely
the Gaussian mixture regression (GMR), is developed,
which treats the secondary and primary variables together,
and learns their joint probability distribution function
(PDF) in each mode. The functional relationship for the
soft sensor can be derived directly from the joint PDF. For
instance, Yuan et al. (2014) trained soft sensors using the
GMR for multimode/multiphase processes, which shows
that the GMR outperforms the unsupervised GMM, be-
cause the GMR learns model parameters together instead
of separately, and thus is not constrained by the number
of samples in each mode. Zhu et al. (2017) developed a
variational GMR to model non-Gaussian processes. Their
studies indicate that the Bayesian treatment can not only
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automatically determine the number of Gaussians, but also
improve the performance compared to the standard GMR.

Although the GMR outperforms the unsupervised GMM,
it requires sufficient labeled samples (for which both the
second and primary variables are known). However, in soft
sensor applications, labelling samples could be expensive
and infrequent due to certain economical or technical lim-
itations. As a result, labeled samples are usually rare and
the success of the GMR could not be guaranteed, because
insufficient samples often lead to unreliable estimation of
the PDF, especially when the dimensionality of process
variables is high. On the contrary, there are large amounts
of unlabeled samples (for which only the secondary vari-
ables are known), which also contain useful information
yet have not been utilized in the GMR. Semisupervised
learning exploiting both labeled and unlabeled samples,
has been confirmed effective for soft sensor development
in remedying the insufficiency of labeled samples (Yao and
Ge (2018)). Moreover, the validity of semisupervised GMM
for classification applications has also been demonstrated
(Xing et al. (2013); Yan et al. (2017)). Unfortunately, to
our best knowledge, no work on semisupervised GMM for
regression task has been reported, in particular for soft
sensor modeling.

Therefore, in order to deal with the above analyzed de-
ficiency of the GMR in the soft sensor application, this
paper proposes a semisupervised GMM (S2GMM) for re-
gression purpose, where both labeled and unlabeled sam-
ples take effect, and the PDF parameters and regression
coefficients in each mode are learned simultaneously by the
expectation-maximization (EM) algorithm.

2. SEMISUPERVISED GAUSSIAN MIXTURE
MODELS

2.1 Formulation of the S2GMM

Let x ∈ Rd and y ∈ R be the d -dimensional input variable
and scalar output variable, respectively, and (Xl,Yl) =
(xi, yi)

nl

i=1 and (Xu) = (xj)
nu

j=1 denote the labeled and

unlabeled dataset, respectively. Here nl and nu are the
numbers of labeled and unlabeled samples, respectively.
Assume there are a total of K Gaussian components, and
for the k-th component, the PDF of x and the functional
dependence of y on x are defined as:

Pk (x) = N
(
x
∣∣µx

k,Σ
x
k

)
y = wT

k x+ w0
k + εk

(1)

where Pk (x) means the PDF of x, N
(
x
∣∣µx

k,Σ
x
k

)
stands

for the Gaussian distribution over x with mean vector µx
k

and covariance matrix Σx
k, wk and w0

k are the regression
coefficients between x and y, εk ∼ N

(
0, σ2

k

)
denotes the

measurement noise of y, respectively, for the k-th compo-
nent. By linear Gaussian operations, the joint PDF of x
and y for the k-th component can be obtained as

Pk (x, y) = N
(
x, y

∣∣µxy
k ,Σxy

k

)
(2)

where

µxy
k =

[
µx

k

wT
k µ

x
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k

]
, Σxy
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[
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k Σx
kwk

wT
k Σ

x
k wT

k Σ
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kwk + σ2

k

]
.

Also, the conditional PDF of y given x is calculated as

Pk

(
y
∣∣x) = N (

y
∣∣wT

k x+ w0
k, σ

2
k

)
(3)

Therefore, in the S2GMM the PDF for labeled and unla-
beled samples can be expressed as

P (xi, yi) =

K∑
k=1

αkPk (xi, yi) (4)

P (xj) =
K∑

k=1

αkPk (xj) (5)

where αk = P (zi = k) = P (zj = k) is the prior of the
k-th component for i = 1, · · · , nl and j = 1, · · · , nu.
Here zi and zj are the latent variables associated with
the i-th labeled sample and j-th unlabeled sample, re-
spectively. Again, using the linear Gaussian operation, the
posterior distributions over the latent variables given the
corresponding labeled and unlabeled sample are calculated
as per

P
(
zi = k

∣∣xi, yi
)
=

αkN
(
xi, yi

∣∣µxy
k ,Σxy

k

)∑K
k=1 αkN

(
xi, yi

∣∣µxy
k ,Σxy

k

) ≡ Rl
ik

(6)

P
(
zj = k

∣∣xj

)
=

αkN
(
xj

∣∣µx
k,Σ

x
k

)∑K
k=1 αkN

(
xj

∣∣µx
k,Σ

x
k

) ≡ Ru
jk (7)

where Rik and Rjk represent the posterior responsibilities
of the k-th component for generating the i-th labeled
sample and j-th unlabeled sample, respectively.

2.2 Parameter learning for the S2GMM

For the S2GMM, the model parameters that need to be

learned are denoted as Θ =
(
αk,µ

x
k,Σ

x
k,wk, w

0
k, σ

2
k

)K
k=1

.
In this paper, we develop an efficient way of fulfilling such
task based on the EM algorithm.

The complete log-likelihood function is formulated as

L (Θ) =
∑
Z

P
(
Z
∣∣Xl,Yl,Xu

)
lnP (Xl,Yl,Xu,Z)

=

nl∑
i=1

K∑
k=1

Rl
ik lnPk

(
yi
∣∣xi

)
+

nl∑
i=1

K∑
k=1

Rl
ik lnPk (xi)

+

nu∑
j=1

K∑
k=1

Ru
jk lnPk (xj) +

nl∑
i=1

K∑
k=1

Rl
ik lnαk

+

nu∑
j=1

K∑
k=1

Ru
jk lnαk + const

(8)

where Z = (Zl,Zu), and Zl = (zi)
nl

i=1 and Zu = (zj)
nu

j=1

are the latent variable sets corresponding to (Xl,Yl) and
Xu, respectively. Setting the derivatives of L (Θ) with

respect to those model parameters except (αk)
K
k=1 to zeros

can get their iteration equations. Specifically,
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∂L (Θ)

∂w̃k
= 0 =⇒ w̃k =

(
X̃T

l Ω
l
kX̃l

)−1

X̃T
l Ω

l
kYl (9)

where w̃k =

[
wk

w0
k

]
, Ωl

k = diag
(
Rl

1k, · · · , Rl
nlk

)
, X̃l =

(Xl,1), and 1 = (1, · · · , 1)T ∈ Rnl . Similarly, we can get

σ2
k =

nl∑
i=1

Rl
ik

(
yi −wT

k xi − w0
k

)2 / nl∑
i=1

Rl
ik (10)

µx
k =

∑nl

i=1 R
l
ikxi +

∑nu

j=1 R
u
jkxj∑nl

i=1 R
l
ik +

∑nu

j=1 R
u
jk

(11)

Σx
k =

∑nl

i=1 R
l
ikx̄ix̄i

T +
∑nu

j=1 R
u
jkx̄jx̄j

T∑nl

i=1 R
l
ik +

∑nu

j=1 R
u
jk

(12)

where x̄i = xi − µx
k, x̄j = xj − µx

k.

Using the Lagrange multiplier that combines L (Θ) and

the constraint
∑K

k=1 αk = 1 leads to

αk =

∑nl

i=1 R
l
ik +

∑nu

j=1 R
u
jk

nl + nu
(13)

Detailed derivations for Eqs.(8)∼(13) are omitted here,
and one can refer to Bishop (2006) for fundamentals. The
procedure for parameter learning for the S2GMM based
on the EM algorithm are summarized as Algorithm 1.

Algorithm 1 Pseudocode for parameter learning for the
S2GMM

Step 1): Initialize Θ =
(
αk,µ

x
k,Σ

x
k,wk, w

0
k, σ

2
k

)K
k=1

.

Step 2): Repeat 3)∼4) until the convergence criterion is

satisfied.

Step 3): E -step

for k = 1, · · · ,K; i = 1, · · · , nl; j = 1, · · · , nu

Calculate Rl
ik with Eq.(6).

Calculate Ru
jk with Eq.(7).

end for

Step 4): M -step

for k = 1, · · · ,K
Update w̃k with Eq.(9).

Update σ2
k with Eq.(10).

Update µx
k with Eq.(11).

Update Σx
k with Eq.(12).

Update αk with Eq.(13).

end for

In Algorithm 1, the convergence criterion can be either the
increment of the log-likelihood function, or the maximum
iteration number. Also, from Algorithm 1 it can be seen

that in the S2GMM, learning (αk,µ
x
k,Σ

x
k)

K
k=1 involves

explicitly both labeled and unlabeled samples, while un-
labeled samples take effect implicitly in the learning of(
w̃k, σ

2
k

)K
k=1

through Rl
ik (k = 1, · · · ,K; i = 1, · · · , nl).

3. SOFT SENSOR DEVELOPMENT BASED ON
S2GMM

Based on the S2GMM, a soft sensor model can be de-
veloped for estimating the true value (yq) of the primary
variable when a sample (xq) of the secondary variable is
available according to the following process.

The posterior distribution over the latent variable (zq)
given xq is calculated according to

P
(
zq = k

∣∣xq

)
=

P (zq = k)P
(
xq

∣∣zq = k
)∑K

k=1 P (zq = k)P
(
xq

∣∣zq = k
)

=
αkN

(
xq

∣∣µx
k,Σ

x
k

)∑K
k=1 αkN

(
xq

∣∣µx
k,Σ

x
k

) (14)

For simplicity, P
(
zq = k

∣∣xq

)
is denoted as Ru

qk. Then, the
conditional PDF of yq given xq is computed as

P
(
yq
∣∣xq

)
=

K∑
k=1

P
(
zq = k

∣∣xq

)
P
(
yq
∣∣xq,zq = k

)
=

K∑
k=1

Ru
qkN

(
yq
∣∣wT

k xq + w0
k, σ

2
k

) (15)

Therefore, the estimation of yq is determined as

ŷq = E
[
yq
∣∣xq

]
=

K∑
k=1

Ru
qk

(
wT

k xq + w0
k

)
(16)

4. CASE STUDIES

In this section, the S2GMM is first investigated using a
numerical example and then applied to developing soft
sensor for a real-life industrial primary reformer in an
ammonia synthesis process. For comparison purpose, the
performance of the GMR (Yuan et al. (2014)) and the pop-
ular partial least squares (PLS) (Lindgren et al. (1993))
are also presented. Parameter initialization in the learning
procedure for the GMR and S2GMM are aided by the
k -means clustering method following the suggestion of
Bishop (Bishop (2006)). In addition, certain proportion
of training samples are chosen as labeled samples, and the
rest of training samples are treated as unlabeled. To deal
with the randomness in the initialization procedure for the
GMR and S2GMM, 100 independent simulations are run
for each labeling rate. The prediction accuracy is measured
using the averaged root mean square error (RMSE), which
is defined as

RMSE =

√√√√ nt∑
t=1

(yt − ŷt)
2

/
nt (17)

where yt and ŷt represent the true and predicted labels of
the t-th testing sample, respectively, and nt stands for the
number of testing samples.

4.1 Numerical Example

Assume a 2-dimensional input vector x = (x1, x2)
T
and a

scalar output y follow the relationship described in Eq.(1)
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with 3 Gaussian components, where the configurations of
each Gaussian component are listed in Table 1, and the
data distributions are visualized in Fig. 1 in the input
space, which presents clear multimode characteristics. In
the simulation, a total of 200 samples are generated for
model parameter learning and 1000 samples are generated
for performance evaluation.

Table 1. Configurations of the three Gaussian
components

k = 1 k = 1 k = 3

αk 20% 30% 50%

µx
k (0,2)T (4,6)T (4,0)T

Σx
k

[
2 1

1 1

] [
1 0.5

0.5 2

] [
3 −1
−1 1.5

]
wk (1,1)T (1,-1)T (-1,1)T

w0
k 0 0 0

σ2
k 0.5 0.5 0.5

Scatter plot comparisons among the three investigated
soft sensing methods are illustrated in Fig. 2, where the
labeling rate is 10%. It is found that in the prediction
results obtained by the PLS, significant bias occurs in all
the three modes, implying that the PLS doesn’t model
any mode well. The reason is that the PLS is a linear
algorithm and can only deal with Gaussian or approximat-
ed Gaussian distributions, but this multimode example is
strongly nonlinear and non-Gaussian. In contrast, the GM-
R and S2GMM show more powerful abilities in capturing
the multimode characteristics. However, the GMR doesn’t
perform well in the area where the output is greater than
0, because this area corresponds to the first component
where the data distribution is longer and narrower, and is
easily disturbed by the other two components, which can
be inferred from Fig. 1.

−5 0 5 10
−4

−2

0

2

4

6

8

10

12

x
1

x 2

Fig. 1. Visualization of the numerical example in the input
space using the testing dataset.

The average predictive RMSE comparisons are presented
in Table 2, which indicates that the addition of labeled
samples doesn’t help the PLS too much, due to its limita-
tion in dealing with the non-Gaussianity. Compared with
the PLS, both the GMR and S2GMM demonstrate evident
advantages, and when the labeling rates are 40% and 50%,

−15 −10 −5 0 5 10
−15

−10
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0
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true value
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ed
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te

d 
va

lu
e

 

 

PLS
GMR

S2GMM

Fig. 2. Scatter plot comparisons among PLS, GMR and
S2GMM.

the predictive accuracies of the GMR and S2GMM are al-
most identical. However, when the labeling rate is reduced
to be below 40%, the performance of the GMR starts to
deteriorate, especially when the labeling rate decreases
to 10%. By contrast, as the labeling rate decreases, the
performance of the S2GMM deteriorates relatively slowly
and the deterioration is much smaller. For examples, when
the labeling rate decreases from 50% to 10%, the deterio-
rations for the GMR and S2GMM are 55.7% and 10.6%,
respectively. Thus, in this numerical example it can be
concluded that the S2GMM outperforms the GMR with
small amount of labeled samples, which verifies the benefit
of incorporating those unlabelled samples.

Table 2. Average predictive RMSE for the
numerical example by PLS, GMR and S2GMM

labeling rate PLS GMR S2GMM

10% 2.1943 1.6776 1.1956

20% 2.0632 1.3890 1.1839

30% 2.1567 1.3184 1.0876

40% 2.0939 1.0101 1.0372

50% 2.0617 1.0776 1.0815

4.2 Primary Reformer

The primary reformer shown in Fig. 3 comes from the
hydrogen manufacturing units in the ammonia synthesis
process. It transforms the desulphurized natural gas into
crude synthesis gas for ammonia production in a follow-
up unit through the following reaction with nickel catalyst:

CnH2n+2 + nH2O
∆←−−−→ nCO+ (2 n + 1 )H2

CH4 +H2O
∆←−−−→ CO+ 3H2

CO+H2O
∆←−−−→ CO2 +H2

(18)

Reaction temperature is a pivotal factor to keep the chem-
ical reaction described in Eq. (18) stable. In an ammo-
nia production plant from the China National Offshore
Oil Company, the reaction temperature is controlled at
a certain level by manipulating the burning condition in
the furnace, which is realized by monitoring the concen-
tration of the oxygen at the top of the primary reformer
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Fig. 3. Flow chart of the primary reformer.

measured by an expensive mass spectrometer (AR03001).
Thus, a soft sensor is desired for online estimating the
oxygen concentration at the top of the primary reformer.
Secondary variables of the soft sensor are selected using
expert knowledge from the field engineers (Yao and Ge
(2017)), which are presented in Table 3.

Table 3. Descriptions of selected secondary
variables for soft sensing O2 concentration

Tags Descriptions

FR03001.PV Flow of fuel natural gas

FR03002.PV Flow of fuel off gas

PC03002.PV Pressure of fuel off gas

PC03007.PV Pressure of furnace flue gas

TI03001.PV Temperature of fuel off gas

TI03009.PV Temperature of fuel natural gas

TR03012.PV Temperature of process gas

TI03013.PV Temperature of furnace flue gas

TI03014.PV Temperature of furnace flue gas

TR03015.PV Temperature of mixed furnace flue gas

TR03016.PV Temperature of transformed gas

TR03017.PV Temperature of transformed gas

TR03020.PV Temperature of transformed gas

Around 1500 samples for soft sensor development have
been selected from the database of the distributed control
systems in a real-life ammonia production plant. Those
samples are evenly partitioned as training ones and testing
ones. The primary reformer is a multimode process due to
the operating conditions, which are shown in Fig. 4 using
the testing samples.

The number of Gaussian components for both the GMR
and S2GMM are roughly pre-defined as 3 according to
the operating conditions. Note that some criteria, such as
the Akaike information criterion (Yan et al. (2017)) and
the absolute increment of the log-likelihood (Yuan et al.
(2014)), can also be used for automatically determining
the number of Gaussian components. Predictions achieved
by the PLS, GMR and S2GMM-based soft sensors for
the oxygen concentration at their average performance
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Fig. 4. Illustration of the multimode characteristics of
primary reformer in terms of O2 content.

levels with labeling rate = 20% are presented as Fig. 5(a),
Fig. 5(b) and Fig. 5(c), respectively.
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Fig. 5. Predictions of the oxygen concentration by: (a)
PLS; (b) GRM; (c) S2GMM.

It can be seen from Fig. 5(a) that like in the previous
numerical example, the PLS could not deal with any mode
pertinently, but tends to find a balance among the three
modes, which is because of its failure in dealing with
the multimode characteristics. In contrast, both the GMR
and S2GMM perform better than the PLS in capturing
multimode characteristics. However, in some areas such as
those around 50-th and 550-th sample, the S2GMM shows
apparent predictive advantages over the GMR.

For further investigations, quantitative prediction accura-
cies achieved by the three soft sensors for the oxygen con-
tent are tabulated in Table 4. Once more, there seems no
substantial performance improvement in the PLS through
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increasing the labeling rate. But the performance of both
the GMR and S2GMM get improved as the labeling rate is
increased from 20% to 50%, and the S2GMM accomplishes
higher predictive accuracy than the GMR. These results
confirm the effectiveness of the semisupervised learning
strategy for the GMM.

However, when the amount of labeled samples are small to
certain extent, for example the labeling rate is set as 10%
in the primary reformer, both the GMR and S2GMM suffer
from the drawback of the standard GMM model, i.e., the
numerical issue caused by ill-conditioned covariance matri-
ces. As a result, the inverse of the covariance matrices of
the PDF for the Gaussian components become unavailable,
which disables the use of the GMR and S2GMM as marked
with the symbol ‘–’ in Table 4.

Table 4. Average predictive RMSE for the
primary reformer by PLS, GMR and S2GMM

labeling rate PLS GMR S2GMM

10% 1.7271 – –

20% 1.6708 1.5064 1.4374

30% 1.6525 1.4341 1.4147

40% 1.6772 1.4271 1.4070

50% 1.6570 1.4011 1.3897

5. CONCLUSION

In this paper, we have proposed a semisupervised version
of the GMM (S2GMM) for regression applications, which
is able to mine the information contained in both labeled
and unlabeld samples. The S2GMM has been applied to
developing soft sensor for the multimode process, and two
case studies including a numerical example and a real-life
chemical process have confirmed the superiorities of the
S2GMM over the popular PLS and the supervised GMM
(GMR).

However, in the second case study we have encountered a
drawback of the S2GMM and GMR with too small amount
of labeled samples and high-dimensional process variables,
namely the numerical issue. A potential way of solving
or alleviating this problem is to form the variational
Bayesian S2GMM or a simpler S2GMM with Bayesian
regularization, which both treat the regression coefficients
for each Gaussian component as random variables. This
will be our future work.
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