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Abstract: Kernel-based modeling methods have been used widely to estimate some difficulty-to-measure 

quality or efficient indices at different industrial applications. Least square support vector machine 

(LSSVM) is one of the popular ones. However, its learning parameters, i.e., kernel parameter and 

regularization parameter, are sensitive to the training data and the model’s prediction performance. 

Ensemble modeling method can improve the generalization performance and reliability of the soft 

measuring model. Aim at these problems, a new adaptive selective ensemble (SEN) LSSVM (SEN-

LSSVM) algorithm is proposed by using multiple learning parameters. Candidate regularization 

parameters and candidate kernel parameters are used to construct many of candidate sub-sub-models based 

on LSSVM. These sub-sub-models based on the same kernel parameter are selected and combined as 

candidate SEN-sub-models by using branch and bound-based SEN (BBSEN). By employing BBSEN at 

the second time, these SEN-sub-models based on different kernel parameters are used to obtain the final 

soft measuring model. Thus, multiple kernel and regularization parameters are adaptive selected for 

building SEN-LSSVM model. UCI benchmark datasets and mechanical frequency spectral data are used to 

validate the effectiveness of this method.   

Keywords: Selective ensemble modeling, soft measuring, least square support vector machine (LSSVM), 

learning parameters selection. 



1. INTRODUCTION 

Some difficulty-to-measure production quality and quantity 

indices cannot be directly measured by hardware sensors or 

calculated by first principal models [ 1 ]. Manual off-line 

laboratory analysis methods or experienced practitioners 

inference approaches are constantly used in several practical 

industries [ 2 , 3 ]. These methods limit the operation 

optimization and control of such industrial processes [ 4 ]. 

Data-driven-based soft sensing techniques are used as 

alternative approaches for measuring these process parameters 

in broad fields [ 5 ]. The commonly used methods include 

artificial neural networks and support vector machines (SVM). 

The least square support vector machines (LSSVM) can 

simplify the quadratic program (QP) problem of the SVM to 

solve a set of linear equations in the sense of sub optimum. 

However, the learning parameters, i.e., kernel parameter and 

regularization parameter, are data depended. Some 

optimization methods have been used to address such problem 

[6]. Many GA-based approaches address learning parameters’ 

identification problem [ 7 , 8 , 9 ]. Recently, some new 

optimization algorithms are proposed to estimate the unknown 

parameters [10,11]. However, long time has to be used to 

search sub optimum solution and only single-model is 

constructed. 

By combining several sing-models with linear or nonlinear 

method, ensemble modeling can improve the   generalization, 

validity and reliability of the prediction model. The first 

problem in ensemble modeling is to construct ensembles. The 

normal used methods include sampling the training examples, 

manipulating the input features, manipulating the output 

targets, and injecting randomness. Different modeling data 

should select different ensemble methods. The optimized 

weighting coefficients calculation approach of neural network 

ensemble model is proposed with the assumption that the 

rows and columns of correlation co-efficient are linear 

independent [12]. Selective ensemble (SEN) modelling based 

on “re-sample training samples” ensemble construction 

method validates that ensemble many of the available sub-

models can obtain better performance than an ensemble all of 

them [13]. Branch and bound (BB) algorithm is always used 

to find optimal solutions of various optimization problems. 

Thus, BB-based SEN (BBSEN) method is used to select sub-

models and calculate the weighting coefficients [3]. One or 

more ensemble construction approaches can also be used in 

one SEN modelling algorithm for improving prediction 

performance further [ 14 ]. Aim at mill load parameters 

forecasting problem based on multi-source multi-scale 

frequency spectral data, selective information fusion strategy 

by integrating SEN and adaptive weighted fusion (AWF) is 
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proposed, which are used to selective fuse the interesting 

mechanical sub-signals [15,16,17].  

Only LSSVM-based SEN modelling methods is focused in 

this study. In [18], fuzzy c-means cluster and LSSVM are 

integrated to obtain training sub-samples and sub-models, and 

partial least squares (PLS) is applied as the combination 

strategy. Most of LSSVM ensemble learning methodologies 

are based on some heuristic algorithms. For example, 

evolutionary programming (EP)-based asymmetric weighted 

LSSVM ensemble model is constructed. Recently, a multi-

level approach in an ensemble of LSSVM by using genetic 

algorithm is proposed, which considers the input feature 

selection, ensemble sub-model construction, and their 

selection and combination together [19]. However, how to 

adaptive select their learning parameters isn’t addressed.  

Motivated by the above problems, a new adaptive SEN-

LSSVM by using learning parameters from candidate ones is 

proposed. At first, candidate regularization parameters and 

kernel parameters are used to construct many of candidate 

sub-sub-models based on LSSVM. Then, these sub-sub-

models based on the same kernel parameter are selected and 

combined as candidate SEN-sub-models by using BBSEN. 

Finally, by employing BBSEN at the second time, these SEN-

sub-models based on different kernel parameters are selected 

and combined. UCI benchmark datasets and mechanical 

frequency spectral data are used to validate the effectiveness 

of the proposed method.  

2. RELATE WORKS 

2.1 Least Square Support Vector Machine (LSSVM) and Its 

Learning Parameter Selection  

We have the following function estimation problem  
T( ) ( )y b  x W x                                                (1) 

where (*)  maps 
1{ }k

l lx  to a higher dimensional feature 

space, W is the weight vector, and b is the bias. The following 

problem would be solved with LSSVM. 
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where JLSSVM is the objective function, LSSVMC  is a 

regularization parameter that used to decide trade-off between 

model complexity and approximation accuracy, and l is the 

approximation error. The Lagrange form of Eq. (2) is 
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where 1{ }k

l l α  are Lagrange multipliers.   

The solution is given by solving the (k+1)(k+1) linear 

equation YAΘ   with 

















IΩ
A

LSSVM

T

1
1
~

1
~

0

C

, 








α

Θ
b

, 











y
Y

0
, T]1,,1,1[1

~
 , 

T

21 ],,,[ k α ,  

and
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21 ],,,[ kyyy y .  In which, kernel  follows Mercer’s 

condition.  It is realized by kernel trick with the selected 

kernel type and kernel parameter, i.e., 

 LSSVM 1,{ }k

l lf K  x                               (4) 

where LSSVMK is the kernel parameter. 

Therefore, two learning parameters, i.e., LSSVMK  and 

LSSVMC  ,  should be selected based on characteristics of the 

modelling data. The single LSSVM model can be denoted as: 

sin LSSVM LSSVM 1
ˆ ( , ;{ } )k

l ly f K C  x                 (5) 

2.2 Ensemble Modelling and Weighting Coefficient 

Calculation 

The prediction output of the thl  sample based on EnJ   

ensemble sub-models is given by 
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l j j j l
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                              (6) 

where j  is the weighting coefficient.  

Defining misfit function of )( lj xf  as )()( ljllj xfyxm  , Eq. 

(5) is rewritten as: 
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By defining symmetric correlation matrix 

)]()([ xmxmEC sjjs  , the  optimum j is calculated by 

minimizing MSE of  )( lxf , i.e., 
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Then, langrange multipliers method can be used with the 

constraint 1 j . The *jopt,
  is used to denote the th*j  

variable of optα  [12],  
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It shows that the optimal weights of these ensemble sub-

models can be calculated with the above analytical solution 

method. However, it is difficult to be realized for the practical 

industrial problem because of the undependable assumption 

among prediction outputs of ensemble sub-models. 

2.3  SEN-based LSSVM Method 

By only selecting some ensemble sub-model, the SEN-based 

LSSVM model can be denoted as: 
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          (10)  

It shows that the following problems should be solved in 

SEN-LSSVM:  (i) Select 
SENJ  ensemble sub-models from 

EnJ candidate ones; (ii) Calculate weighting 

coefficients Sen

1{ }
J

j j  ; (iii) Select kernel parameter
LSSVMK ; (IV) 

Select regularization parameter
LSSVMC ; and (V) Maintain 

diversities among different ensemble sub-models.  

Therefore, except the former two problems, the challenge is 

how to make the later three questions to be solved jointly. It is 

focus of this study. 

3. PROPOSED ADAPTIVE SEN-LSSVM METHOD 

Based on the above analysis, a new adaptive SEN-LSSVM 

modelling strategy is proposed based on ensemble 

construction by using candidate learning parameters. We 

denote 
1{( , )}k

l l ly x  as the modelling data, ker

LSSVM

j
K as the 

ker thj candidate kernel parameter, reg

LSSVM

j
C as the 

regthj candidate regularization parameter, and 
1

ˆ{ }k

l ly 
 as 

prediction outputs of the adaptive SEN-LSSVM model. The 

same candidate regularization parameters are used in term of 

maintain simplify and diversities among different sub-sub-

models. Thus, all the candidate kernel and regularization 

parameters can be represented as ker ker

ker
LSSVM 1

{ }
j J

j
K


 

and reg reg
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C


  with number 

kerJ and 
regJ .  

Taken the 
ker thj kernel parameter as example, the candidate 

sub-sub-models with different regularization parameters are 

constructed. This process is shown as, 
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The prediciotn ouput of the 
can

reg thj sub-sub-model is denoted 

as 
ker reg

Sub-subˆ
j j

y , i.e., 
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 Then, BBSEN approach is used to select the optimum 

ensenble sub-sub-models and calculate their weighting 

coefficients. This process is shown as: 
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Based on Eq. (13), the prediction output of the obtained SEN-

sub-model sel
ker reg

SEN-sub ( )
j J

f    can be represented as: 
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By repeating the above procedure 
kerJ  times, all the SEN-sub-

models with different kernel parameters are obtained. Their 

prediction outputs can be denoted as ker

ker ker

SEN-sub

1
ˆ{y }

J

j j 
.  Then, we 

use BBSEN at the second time to obtain the final adaptive 

SEN-LSSVM model SEN ( )f  . This process is shown as, 
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Based on Eq. (11)-(15), the prediction output of the final soft 

measuring model SEN ( )f   can be represented as: 
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It shows that the number of Sub-sub-model and SEN-sub-

model are ker regJ J  and kerJ , respectively.  The BBSEN 

method is used 
ker( 1)J  times to build the SEN-sub-models 

and the final adaptive SEN-LSSVM model. Obviously, the 

SEN-sub-models and the final SEN-LSSVM model can select 

the regularization and kernel parameters adaptively. 

4. EXPERIMENTAL STUDY 

Three datasets are used to validate the proposed methods. 

Each datasets are divided into two parts, which are training 

and testing ones, respectively. The popular radius basis 

function (RBF) is used in this paper. Two groups of  candidate 

kernel and regularization parameters, i.e., 

Can_1={[0.01,0.03,0.05,0.07, 0.09,0.1,0.3,0.5, 0.7,0.9,1,3,5, 

7,9,10,30, 50,70,100, 300,500,700,900,1000], [1,10,100,200, 

400, 800, 1600, 3200, 6400, 12800]} and Can_2= 

{[1,10,100,500, 1000,2000, 4000, 6000, 8000, 10000, 20000, 

40000, 60000,8000],[400,800, 1600,3200,6400,12800, 

25600,51200, 102400]} are used in this study. 

In this study, the proposed adaptive SEN-LSSVM method is 

mainly compared with the linear/non-linear latent structure 

modelling methods (partial least squares (PLS), kernel PLS 

(KPLS)) and one ensemble modelling approach (AGA-DNNE 
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[ 20 ]) methods. The low UCI and high dimensional 

mechanical frequency spectral datasets are used in this study.  

4.1 Simulation Results by Using UCI Data  

Two low-dimensional UCI benchmark datasets are used to 

validate the proposed method, which are Boston housing data 

and Concrete compressive strength data.   

Boston housing data: The inputs include  (1) Per capita crime 

rate by town (CRIM); (2) Proportion of residential land zoned 

for lots over 25,000 sq. ft. (ZN); (3) Proportion of non-retail 

business acres per town (INDUS) ; (4) Charles River dummy 

variable (CHAS) ; (5) Nitric oxide concentrations (NOX) ; (6) 

Average number of rooms per dwelling (RM) ; (7) Proportion 

of owner-occupied units built prior to 1940 (AGE); (8) 

Weighted distances to five Boston employment centers (DIS); 

(9) Index of accessibility to radial highways (RAD); (10) Full-

value property-tax rate per $10,000 (TAX); (11) Pupil-teacher 

ratio by town (B); (12)lower status of the population 

(LSTAT);(13) Median value of owner-occupied homes in 

$1000s (MEDV). The output is housing values in the suburbs 

of Boston. And the data size is 506. 

Concrete compressive strength data: The inputs include (1) 

Cement; (2) Blast furnace slag; (3) Fly ash; (4) Water; (5) 

Superplasticizer; (6) Coarse aggregate; (7) Fine aggregate in 

concrete per cubic meters of the various ingredients of 

concrete placement; (8) Conserved days. The output is 

concrete compressive strength. And the data size is 1030. 

To Boston housing data with two groups candidate kernel and 

regularization parameters, the SEN-sub-models’ prediction 

errors (RMSEs,) are shown in Fig. 1. 
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Fig. 1. SEN-sub-models’ prediction errors of Boston housing data 

It shows the two best SEN-sub-models select kernel 

parameter 30 and 1 from different candidate ones. To the 

SEN-sub-model with kernel parameter 30, it selects 

regularization parameters 10, 800, 400, 200 and 100 to 

construct ensemble sub-sub-models with RMSE 3.051.  To 

SEN-sub-model with kernel parameter 1, regularization 

parameters 102400, 3200, 1600, 800 and 400 are used to 

build sub-sub-models with RMSE 3.162. To the Concrete 

compressive strength data, similar results can be obtained as 

that in Fig. 1. They are omitted in here. 

Table 1.  Statistical results of based on different data 

 

Boston housing 

data 

Concrete 

compressive 

strength data 

Can-1 Can-2 Can-1 Can-2 

RMSE 

Sen 

SENsub 
3.027 3.158 7.220 7.163 

SENsub 3.051 3.162 7.291 7.436 

EnSENsub 4.160 3.284 8.968 8.270 

SEN-sub number 

of SenSENsub 
14 9 11 3 

 

With these candidate SEN-sub-models, the final adaptive  

SEN-LSSVM model is constructed. The statistical results of 

the final SEN model (SenSENsub), the best SEN-sub-model 

(SENsub) and ensemble all SEN-sub-model (EnSENsub) are 

show in Table 1. The prediction curves are shown in Fig. 2-3. 
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Fig. 2. Prediction curves of Boston housing data 
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Fig. 3. Prediction curves of concrete compressive strength 

data 

The above results show that the proposed method can 

model two UCI benchmark datasets effectively. The 

proposed method has the best prediction performance 

among three approaches. Its structure is adaptive selected. 

4.2 Simulation Results by Using Frequency Spectral Data  

Mechanical frequency spectral data from a laboratory scale 

ball mill is used to validate the proposed method. The data 

size is 26×15000, half of which is for training and half is for 

testing. Same as that in [20], charge volume ratio (CVR) is 

the only process parameter modelled in this study. 

Considering the high dimensional of the frequency spectral 

data, PCA is the used to make feature extraction. The relation 

between the former 10 principal components (PCs) and the 

cumulate contribution ratio is shown in Fig. 4. 
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Fig. 4. Relation between the former 10 PCs and cumulate 

contribution ratio contribution 

Fig. 4 shows that the first PC captures 70% information of 

the 15000 input frequency features. It also shows to select 

suitable PC number is important for construct effective soft 

sensor model. With the candidate learning parameters in 

“Can_2”, the adaptive SEN-LSSVM models are constructed 

with PC number from 1 to 10. The best testing prediction 

results among SenSENsub, SENsub and EnSENsub models 

are shown in Fig. 5. 

Fig. 5 shows that the suitable value is 8 for the SEN-LSSVM 

model based on these frequency spectral data. By using PC 

number as 8, the prediction curves of different LSSVM-

based soft measuring models are shown in Fig. 6. 
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Fig. 5. Prediction errors based on different PCs number 
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Fig. 6. Prediction curves of frequency spectral data 

5.3 Comparative Results 

The proposed method is compared with the PLS, KPLS, 

RVFL and AGA-DNNE approaches. Popular radius kernel 

function is used in KPLS. The number of latent variables 

(LVs) and kernel LVs (KLVs) are decided by the leave-one-

out cross-validation. The number of hidden nodes of the 

RVFL is set as two times of the original inputs’ number. The 

input features and learning parameters of DNNE are selected 

by using AGA. For RVFL and AGA-DNNE, the modelling 

process is repeated 100 times to overcome their randomness. 

Table 2.  Statistical results of comparative methods 

 
Boston housing 

data 

Concrete 

compressive 

strength data 

Frequency 

spectral data 

PLS 4.681 10.92 0.04902 

KPLS 3.195 8.179 0.05312 

RVFL 4.740±0.3223 10.66±0.7308 4.208±0.5078 

AGA-

DNNE 
3.272±0.1399 8.303±0.3590 0.06176±0.01019 

This paper 3.027 7.163 0.03590 

Table 2 shows that the proposed method has the best 

prediction performance without disturbance. As the input 

weights and bias of RVFL and AGA-DNNE methods are 

random initialization, their prediction errors are disturbed in 

a certain range. PLS/KPLS methods use the extracted latent 

variables to construct linear or nonlinear model. More 

researches should be done in the further study.   
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5. CONCLUSIONS 

Selective ensemble (SEN) modeling method based on least 

square support vector machine (LSSVM) by adaptive using 

multiple candidate learning parameters, i.e., adaptive SEN-

LSSVM, is proposed in this study. The contributions include: 

(1) Learning parameters of LSSVM are adaptive selected by 

using SEN modeling strategy; (2) Multiple learning 

parameters-based adaptive layer SEN-LSSVM algorithm is 

proposed at the first time; (3) The structure of double layer 

SEN model are adaptive determined during the modeling 

process. Simulation results based on UCI benchmark and 

mechanical frequency spectral datasets validate the 

effectiveness of this method.  
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