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Abstract: This work presents an optimization-based methodology for the placement and
scheduling of measurement sensors and control actuators in spatially-distributed processes
with low-order dynamics and discretely-sampled output measurements. Initially, a sampled-
data observer-based controller, with an inter-sample model predictor, is designed based on an
approximate finite-dimensional system that captures the infinite-dimensional system’s dominant
dynamics. An explicit characterization of the interdependence between the stabilizing locations
of the sensors and actuators and the maximum allowable sampling period is obtained. Based on
this characterization, a constrained finite-horizon optimization problem is formulated to obtain
the sensor and actuator locations, together the corresponding sampling period, that optimally
balance the tradeoff between the control performance requirements on the one hand, and the
demand for reduced sampling, on the other. The objective function penalizes both the control
performance cost, expressed in terms of the response speed and the control effort, and the
sampling cost, expressed in terms of the sampling frequency. The optimization problem is solved
in a receding horizon fashion, leading to a dynamic policy that varies the sensor and actuator
spatial placement, together with the sampling period, over time. The developed methodology is
illustrated through an application to a simulated diffusion-reaction process example.

Keywords: Sampled-data control, sensor and actuator placement, receding horizon
optimization, scheduling, spatially-distributed systems.

1. INTRODUCTION

Despite the extensive body of research work on control
of spatially-distributed systems, the problem of designing
sampled-data feedback controllers for spatially-distributed
processes has received relatively limited attention (e.g., see
Logemann et al. (2005); Cheng et al. (2009); Fridman and
Blighovsky (2010) for some notable exceptions). This is an
important problem given the prevalent use of digital sen-
sors and controllers in industrial control systems. To date,
the overwhelming majority of studies on the analysis and
design of sampled-data control systems have focused pri-
marily on lumped parameter systems modeled by ordinary
differential equations (e.g., see Chen and Francis (1995);
Nesic and Grune (2005); Hu et al. (2007); Naghshtabrizi
et al. (2008); Fujioka (2009); Hu and El-Farra (2011)).

An effort to address the sampled-data control problem for
spatially-distributed systems was undertaken in a series
of earlier works (e.g., Yao and El-Farra (2011, 2012)).
The main idea was to include an approximate finite-
dimensional model of the infinite-dimensional system in
the controller to provide estimates of the dominant slow
states that compensate for the unavailability of output
measurements between sampling times, and to update the
model states using the actual measurements at each sam-
pling time. A key objective of this model-based control ap-
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proach was to guarantee closed-loop stability with minimal
sampling frequency. This is an appealing goal in situations
where technological constraints on the measurement sens-
ing techniques make it difficult or costly to collect measure-
ments frequently. To this end, an exact characterization
of the maximum allowable sampling period required for
stabilization was obtained in the earlier studies and found
to depend on the spatial placement of the measurement
sensors and control actuators. An implication of this find-
ing is that one could use this characterization to identify
the set of feasible sensor and actuator locations that can
achieve stabilization with minimal sampling frequencies.
While this is important from a sampling cost savings
standpoint, the resulting actuator and sensor placement
does not consider the impact of discrete measurement
sampling on closed-loop performance. It is well known, for
example, that faster sampling rates are typically required
to enhance the control system performance. Ultimately,
there is a need to resolve the inherent conflict that arises
between the tight restrictions on sampling rates which are
required to maintain the control system performance on
the one hand, and the usual demand for limited sampling
frequency which is desired to minimize measurement costs.

Motivated by these considerations, we present in this
work an optimization-based approach for the integration
of control and actuator/sensor scheduling in spatially-
distributed processes with discretely-sampled output mea-
surements. The objective is to simultaneously optimize
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the control system performance and the sampling costs by
dynamically scheduling the sensor and actuator locations,
as well as the sampling period, subject to the appropriate
stability constraints. The rest of the paper is organized
as follows. Following some preliminaries in Section 2, an
observer-based controller that relies on an inter-sample
model predictor and a fixed sensor-actuator placement is
introduced in Section 3, along with a parametric charac-
terization of its closed-loop stability region. This charac-
terization is incorporated as a constraint within a finite-
horizon optimization problem that is formulated in Section
4, where the cost function includes explicit penalties on the
response speed, the control action and the sampling fre-
quency. A receding horizon strategy for implementing the
optimization problem solution is then devised in Section
5 to determine the optimal placement and scheduling of
the sensors and actuators and the optimal sampling rate.
Finally, a simulation case study is presented in Section 6.

2. PRELIMINARIES

We consider spatially-distributed processes modeled by
highly-dissipative infinite-dimensional systems. An exam-
ple of this class of systems, which is introduced in this sec-
tion to illustrate the subsequent theoretical development,
are systems described by parabolic PDEs:

∂x̄

∂t
= α

∂2x̄

∂z2
+ βx̄+ ω

n∑
i=1

bi(z)ui

yi(t) =

∫ π

0

qi(z)x̄(z, t)dz, i ∈ {1, 2, · · · , l}
(1)

subject to the boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (2)

where x̄(z, t) ∈ R is the process state variable, z ∈ [0, π] is
the spatial coordinate, t ∈ [0,∞) is the time, ui ∈ R is the
i-th manipulated input, n is the number of manipulated
inputs, bi(·) is the actuator distribution function, yi is the
i-th measured output, qi(·) is the i-th sensor distribution
function, and x̄0(z) is a smooth function of z. The PDE of
(1), subject to the boundary and initial conditions of (2)
can be formulated as an infinite-dimensional system with
the following state-space representation:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Qx(t)
(3)

where x(t) = x̄(z, t), t > 0, z ∈ [0, π], is the state
function defined on an appropriate Hilbert space, H =
L2(0, π), endowed with the proper inner product and
norm; A is the differential operator; B and Q are the input
and output operators, respectively; u = [u1 · · · un]

T ,
y = [y1 · · · yl]

T , and x0 = x̄0(z). Applying modal
decomposition techniques, the infinite-dimensional system
can be decomposed as follows:

ẋs = Asxs + Bsu, xs(0) = Psx0 (4)

ẋf = Afxf + Bfu, xf (0) = Pfx0 (5)

y = Qsxs +Qfxf (6)

where xs = Psx is the state of a finite-dimensional
system that describes the evolution of the slow (possibly
unstable) eigenmodes; xf = Pfx is the state of an infinite-
dimensional system that captures the evolution of the fast
(stable) eigenmodes; and Ps and Pf are the orthogonal
projection operators, where As = PsA, Bs = PsB, Af =
PfA, and Bf = PfB. To simplify the presentation of the

main results, we assume that the number of actuators
and sensors is the same and equal to the number of the
dominant modes (i.e., n = l = m).

Based on the above decomposition, the following approx-
imate finite-dimensional system which describes the tem-
poral evolution of the slow (possibly unstable) eigenmodes
can be derived using Galerkin’s method:

ȧs = Asas +Bs(za)u(t), ȳs = Qs(zs)as (7)

where as = [a1 · · · am]T ∈ Rm; ai is the amplitude of the
i−th eigenmode; ȳs is the output; As is an m×m diagonal
matrix of the form As = diag{λj} containing the slow
eigenvalues in the spectrum of A; Bs is an m × m input
matrix whose individual elements are parameterized by
the locations of the control actuators za; Qs is an invert-
ible m × m output matrix whose individual elements are
parameterized by the locations of the measurement sensors
zs (the invertibility assumption can be ensured by proper
selection of the sensors’ locations). The reduced-order sys-
tem of (7) will be used in the next section to design a
model-based output feedback controller that achieves sta-
bilization using discretely-sampled output measurements.

3. OBSERVER-BASED CONTROL USING AN
INTER-SAMPLE MODEL PREDICTOR

We consider an output-feedback control structure in which
the output measurements collected by the sensors are
available to the controller only at discrete sampling times.
A dynamic state observer is used to generate an estimate of
the state which is used to compute the control action. Ow-
ing to the unavailability of output measurements between
sampling times, an inter-sample model predictor is used
to generate an estimate of the output between sampling
times. This estimate is used by the observer and is re-set
using the actual output when it becomes available at the
next sampling time. The implementation of this combined
control and update strategy is given by:

u(t) = Kη(t), t ∈ [tk, tk+1)

η̇(t) = Âsη(t) + B̂su(t) + L(ŷs(t)− Q̂sη(t))
˙̂as(t) = Âsâs(t) + B̂s(za)u(t)

ŷs(t) = Q̂s(zs)âs(t)

âs(tk) = Q̂−1
s ȳs(tk), k ∈ {1, 2, · · · }

tk+1 = tk +∆

(8)

where η is the state of the observer; Âs, B̂s and Q̂s are

approximate models of As, Bs and Q̂s, respectively; K
and L are the feedback controller and observer gains,
respectively; âs and ŷs are the state and output of the
inter-sample model predictor; tk denotes the k-th sampling
time, and ∆ > 0 is the sampling period. For simplicity, we

assume that Q̂s = Qs (i.e., no uncertainty in zs).

The following theorem provides an exact characterization
of the closed-loop stability properties under the observer-
based controller of (8) with a periodic sampling strategy.
The proof is conceptually similar to the one in Garcia et al.
(2014) and is omitted for brevity.

Theorem 1. Referring to the closed-loop system of (7)-(8),
the origin is exponentially stable if and only if:

λmax[M(K,L,∆, Âs, B̂s(za), As, Bs, Q̂s(zs))] < 1, (9)

where λmax is the largest eigenvalue magnitude of the
matrix M which is given by:
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M = Ise
Λ∆Is, (10)

where

Is =

[
Im×m Om×m Om×m

Om×m Im×m Om×m

Om×m Om×m Om×m

]
(11)

where Im×m is the m × m identity matrix, Om×m is the
m×m zero matrix, and Λ is the closed-loop matrix given
by:

Λ =

 As BsK Om×m

LQ̂s Âs + B̂sK − LQ̂s −LQ̂s

(As − Âs) (Bs − B̂s)K Âs

 (12)

Remark 1. The stability condition of (9) provides an ex-
plicit characterization of the interdependence between the
process and model parameters, the controller and observer
gains, the sampling period, and the sensor and actuator
locations in influencing closed-loop stability. For example,
for fixed model and controller parameters, this charac-
terization can be used to determine how the maximum
allowable sampling period depends on the spatial place-
ment of the sensors and actuators. This characterization
is important as it provides the basis for the optimization
formulation introduced in the next section.

4. AN OPTIMIZATION-BASED FORMULATION FOR
SENSOR AND ACTUATOR PLACEMENT

While the stability condition in Theorem 1 provides a
useful tool that can be used to analyze how different
sensor and actuator locations influence the size of the
maximum allowable sampling period, it leaves open the
question of how to best place the sensors and actuators
in a way that optimally balances the desire for reduced
sampling frequency with the demand for improved control
system performance. Furthermore, the implementation of
the observer-based controller of (8) involves the use of
a constant sampling rate which is not always the best
choice, especially in the presence of unexpected external
disturbances and changing operating conditions. In this
section and the next, we describe an optimization-based
formulation that aims to address both problems.

We consider the following finite-horizon optimization prob-
lem in which the sampling period, the sensor and actuator
locations at any given time are determined by minimizing
the following cost functional:

min
zk
s ,z

k
a ,∆k

J(zks , z
k
a ,∆k)

where, J = Jp + Js

Jp =

∫ tk+H

tk

[ŷTs (τ)Wy ŷs(τ) + uT (τ)Wuu(τ)]dt

Js =

∫ tk+H

tk

β(∆k, w∆)dt

subject to:

ŷs(t) = Q̂s(z
k
s )âs(t), tk ≤ t < tk +H

˙̂as(t) = Âsâs(t) + B̂s(z
k
a)u(t), tk ≤ t < tk +H

η̇(t) = Âsη(t) + B̂s(z
k
a)u(t) + L(ŷs(t)− Q̂s(z

k
s )η(t)),

tk ≤ t < tk +H

u(t) = Kη(t), tk ≤ t < tk +H

λmax[M(K,L,∆k, Âs, B̂s, As, Bs, Q̂s)] < 1

(13)

where M is defined in (10)-(12), tk, is the k−th sampling

time, zks , zs(tk), z
k
a , za(tk), H denotes the optimization

horizon, Wy, Wu are positive-definite weighting matrices
that represent the penalties on the model output and the
control action, respectively, and β(∆k, w∆) > 0 is the
penalty on the sampling frequency, which is taken to be a
smooth function of the sampling period ∆k, and w∆ is a
positive weighting on the sampling penalty.

Referring to the above optimization formulation, the de-
cision variables are the sensor locations, zks , the actuator
locations zka , and the sampling period, ∆k, which must
be chosen at time tk to satisfy the closed-loop stability
condition of (9), which captures the feasible region for
the optimization problem. The solution to the optimiza-
tion problem at a given time tk yields the optimal triple
(zks , z

k
a ,∆k) that minimizes the total cost J over the given

horizon H.

Remark 2. While the optimal actuator/sensor placement
problem for spatially-distributed systems has been the
subject of significant prior work (e.g., see Antoniades
and Christofides (2000); Demetriou and Kazantzis (2004);
Armaou and Demetriou (2006); Iftime and Demetriou
(2009)), the emphasis of previous approaches has been
either on meeting certain controllability and observability
requirements, or on optimizing the performance of the
closed-loop system (e.g., in terms of the response speed
and control effort) without consideration of the effects or
costs associated with discrete measurement sampling. The
formulation proposed in (13) represents a departure from
conventional approaches by aiming to balance control per-
formance considerations with the demand for reduced sam-
pling. Specifically, the objective function in (13) consists
of a performance cost, Jp, which imposes penalties on the
model output and the control action, and a sampling cost,
Js, which penalizes frequent sampling. A simple choice for
the sampling cost is to set β = w∆/∆, which ensures that
faster sampling rates incur larger penalties. Note that Jp
is expressed in terms of the model output since the actual
output is unavailable between sampling times.

Remark 3. The choice of the various penalty weights in
the optimization formulation should be made to reflect the
relative significance of the different costs. For example, im-
posing larger penalties on the sampling frequency suggests
an increased emphasis on the sampling cost relative to the
control performance. On the other hand, for systems where
sampling costs are negligible, more emphasis is placed on
the controller performance.

5. DYNAMIC ACTUATOR/SENSOR SCHEDULING
USING RECEDING HORIZON OPTIMIZATION

Referring to the implementation of the optimization for-
mulation in (13), one possible strategy is to solve the
problem once at the beginning of the horizon, apply the
resulting optimal sensor and actuator locations and sam-
pling period over the entire horizon length, and then repeat
the optimization when the end of the horizon is reached.
While this strategy reduces the computational load asso-
ciated with repeated on-line optimization (especially if H
is large), it does not take into account the fact that the
cost function is dependent on the model state trajectory,
and the fact that the model state is to be updated at each
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sampling time. It may also limit the ability of the process
to respond in a timely fashion to changes in operating
conditions by limiting the frequency of feedback from the
process. These considerations call for a receding horizon
implementation strategy, where (13) is solved on-line at
each tk, and the resulting sensor and actuator locations,
zks and zka , together with the corresponding stabilizing
sampling period, ∆k, are implemented only for a single
sampling period within the horizon. By the end of the
sampling interval at t = tk + ∆∗

k, a new sampled output
measurement is sent from the sensor to the controller and
used to update the model state as follows:

(zs(t), za(t),∆(t)) = (zk
∗

s , zk
∗

a ,∆∗
k)

= arg min
zk
s ,z

k
a ,∆k

J, ∀ t ∈ [tk, tk +∆∗
k)

âs(tk +∆∗
k) = Q̂−1

s (zks )ȳs(tk +∆∗
k)

With the updated model state, the optimization problem
of (13) is re-solved to determine (zk+1∗

a , zk+1∗

s ,∆∗
k+1) at

t = tk+1 = tk + ∆∗
k. The newly obtained solution is then

implemented for t ∈ [tk+1, tk+1 +∆∗
k+1) and the problem

is re-solved at end of the sampling period. Algorithm 1
summarizes the on-line receding horizon strategy.

Remark 4. The repeated on-line optimization approach
described in Algorithm 1 leads to a time-varying sched-
ule for moving the sensor and actuator locations as well
as the sampling rate. Compared with the observer-based
controller in (8) with a constant sampling rate, the time-
varying scheduled sensor and actuator locations and sam-
pling rates obtained through the optimization formulation
allow the process to adaptively respond to unexpected
changes in operating conditions.

Remark 5. The receding horizon implementation of the
optimization formulation bears resemblance to the imple-
mentation of MPC policies, where a finite-horizon opti-
mization problem is re-solved at every sampling time, and
the optimal solution is implemented for the duration of
the first sampling period only, at the end of which new
output measurements are obtained and fed back to the
controller to update the model state and correct possible
deviations in the model state trajectory. This feedback-
based approach is appealing since it provides some robust-
ness to process-model mismatch and changes in operating
conditions due to disturbances. Note, however, that unlike
conventional MPC schemes, the frequency at which the
optimization problem is re-solved is not fixed. It s rather
determined online as part of the optimization problem
solution. Furthermore, closed-loop stability is guaranteed
through the constraint in (9) and is therefore independent
of the horizon length.

Remark 6. From an implementation standpoint, the hori-
zon length should be chosen such that H > ∆. A suitable
choice for H can be made on the basis of the characteriza-
tion of the feasible region in terms of za, zs and ∆ obtained
prior to online implementation. Specifically, by analyzing
the λmax(M) over a specified range of sensor and actuator
locations, an upper bound on the feasible sampling period
can be obtained. In other words, the maximum allowable
sampling period, ∆max, can be viewed as a function of zs
and za, where the stability condition that λmax(M) < 1
is satisfied. Then by considering a range of possible sensor
and actuator locations, a corresponding range of possible
sampling periods could be estimated and used to choose

1 characterize ∆max(zs, za) based on the stability condi-

tion of (9);

2 specify the penalty weights Wy, Wu and w∆;

3 initialize ŷs(t0) = ȳs(t0), âs(t0) = η(t0) = Q̂−1
s ȳs(t0);

4 solve (13) to determine z0s , z
0
a, and ∆0;

5 place zs = z0s and za = z0a;

6 start system operation;

7 sample output measurements ȳs(t) at t = ∆1;

8 set k = 1;

9 solve equation (13) to determine zks , z
k
a and ∆k;

10 relocate zs = zks and za = zka ;

11 while tk ≤ t < tk +∆k do
zs(t) = zks and za(t) = zka ;

u(t) = K(η(t));

end

12 if t = tk +∆k then
sample output measurements ȳs(t);

update model state âs(t) = Q̂−1
s ȳs(t);

k = k + 1;

goto step 9
end

Algorithm 1. A receding horizon implementation strategy for

actuator/sensor scheduling.

a suitable horizon length, where ∆max serves as a lower
bound on H (see Section 6 for an analysis of the impact
of the horizon length).

6. SIMULATION EXAMPLE

We consider a non-isothermal diffusion-reaction process
described by the following parabolic PDE:

∂x̄

∂t
=

∂2x̄

∂z2
+ [(βT + θ1)γe

−γ − βU ]x̄+ βUb(z)u(t) (14)

subject to Dirichlet boundary conditions as in (2), where x̄
is a dimensionless process temperature, the manipulating
input u is a dimensionless temperature of the cooling
medium, βT = 80.0, γ = 2.0, βU = 1.66 are nominal
process parameters, θ1 = 0.01 is a parametric uncertainty
in the heat of reaction, and b(z) is the actuator distribution
function. It can be verified that the operating steady-
state x(z, t) = 0 (with u = 0) is unstable. The control
objective is to stabilize the temperature profile at this un-
stable, spatially uniform steady-state by manipulating the
temperature of the cooling medium with minimal output
measurement sampling. A point control actuator and a
single point measurement sensor (with finite support) are
assumed to be available. We consider the first eigenvalue of
the differential operator to be dominant and use Galerkin’s
method to derive an uncertain ODE model which is used
for the synthesis of the controller. It was verified that
the controller under continuous sampling stabilizes the
closed-loop system. In the following simulation studies, the
controller and observer gains are chosen as K = 15 and
L = 50, respectively.

6.1 Characterizing the closed-loop stability region

Following the proposed methodology, the first step is to
characterize the stability region in terms of the sensor and
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actuator locations and the sampling period. We begin by
analyzing the effect of the sensor location on closed-loop
stability, the sampling and performance costs when the
actuator is placed at the middle of the spatial domain at
za = π/2.
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Fig. 1. Plot (a): Contour plot of λmax(M(zs,∆)) for za = π/2. Plot
(b): Maximum allowable sampling period as a function of sensor
location, ∆max(zs). Plot (c): Dependence of performance and
sampling costs on sensor location. Plot (d): Magnified view of
the performance cost as a function of zs.

Fig.1(a) shows a contour plot of λmax(M(zs,∆)) where
the region enclosed by the unit-contour line (the uncolored
region) is the stable region, while the colored region repre-
sents the zone where λmax(M(zs,∆)) > 1 and therefore is
the unstable region. The implication of this plot is that for
a specific sensor location, there is a maximum allowable
sampling period beyond which instability would occur.
Fig.1(b) traces the unit-contour line in Fig.1(a) which de-
fines the maximum allowable sampling period, ∆max(zs),
as a function zs. The shape of ∆max(zs) is symmetric and
suggests that prolonging the maximum allowable sampling
period requires placing the sensor closer to the boundaries.

Fig.1(c) shows a snapshot of the breakdown of the total
cost (defined in (13)) at the first sampling time, t1 = 0.208,
when the optimization problem is solved on-line for the
first time in the operating stage. The weighting parameters
are chosen as Wy = Wu = 150, w∆ = 1, and H = 2 (which
is approximately twice the maximum allowable sampling
period achievable in the actuator spatial domain). The red
line shows the sampling cost, Js, as a function of zs, while
the blue curve depicts the control performance cost, Jp,
as a function of zs. As expected, the dependence of Js on
zs is opposite to that of ∆max(zs) shown in Fig.1(b) since
longer sampling periods translate into lower sampling cost.
It can be seen that both the sampling and performance
costs exhibit similar qualitative dependence on zs, where
the cost is largest at the center, zs = π/2 and decreases as
the sensor is moved closer to the boundary (even though
the performance cost appears to depend only weakly on zs
as can be seen in Fig.1(d)). This suggests that no tradeoff
between the two costs exists, and that reducing the total
cost favors locating the sensor close to the boundary. This
leads to a static (i.e., fixed) sensor placement instead of a
dynamic scheduling policy.

Similar to the foregoing analysis, the feasible region with
respect to the actuator location can be characterized.
Fig.2(a) shows a contour plot of λmax(M(za,∆)) for a fixed
sensor location, whereas Fig.2(b) plots ∆max(za) for dif-
ferent sensor locations. The analysis here shows the same
trend observed for the sensor placement problem regarding
the feasible region, i.e., moving the actuator closer to the
boundary helps increase the maximum allowable sampling
period (i.e., reduce the sampling cost). Moreover, it can be
seen that moving the sensor away from the center enlarges
the feasible region leading to longer permissible sampling
periods.
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Fig. 2. Plot (a): Contour plot of λmax(M(za,∆, zs = π/2)). Plot
(b): Maximum allowable sampling period as a function of
actuator locations, ∆max(za), for various sensor locations.

6.2 Optimization-based actuator scheduling strategy

The stability region characterization in Fig.2 is used in this
section to formulate and solve the optimization problem of
(13). The weighting parameters and the optimization hori-
zon length are kept the same as in Section 6.1. Note that
when the maximum allowable sampling period is used, the
closed-loop system is only critically stable. Therefore, to
enforce asymptotic stability, the actual sampling period
needs to be reduced slightly in practice. In this section,
the sampling period used is 0.7∆max.

Fig.3 shows the influence of the actuator location on the
total cost and its breakdown at t = 0.208 and at t = 4,
respectively. It can be seen that, in both cases, minimizing
the sampling cost favors moving the actuator closer to
the boundary whereas minimizing the performance cost
favors moving it away from the boundary, leading to an
optimal location in between that minimizes the total cost.
Comparing the two plots, it can also be seen that the
sampling cost does not change over time (note the different
scales), whereas the performance cost decreases as time
goes on. This is expected since the sampling cost does not
depend on the model state, and therefore is unaffected by
the sampling and model updates. But since the controller
is designed to be stabilizing, the model output continues
to decay over time, leading to smaller performance costs.
Moreover, at early times when the model output is far
away from its steady state, the performance cost is more
dominant, but as the output converges, the sampling cost
picks up and becomes more dominant at later times. As a
result, the shape of the total cost varies over time, causing
the optimal actuator location to vary with time.

Fig.4 shows the results when the optimization problem
in (13) is solved in a receding horizon fashion. Fig.4(a)
depicts the closed-loop state profile when zs = π/10, while
Figs.4(b)-(d) compare the closed-loop state trajectory, the
optimal actuator schedules, and the sampling frequencies
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Fig. 3. Snapshots of the sampling cost, the performance cost and
the total cost as functions of za, at t = 0.208 (plot (a)) and at
t = 4 (plot (b).
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Fig. 4. Plot (a): Closed-loop state profile with zs = π/10. Plot (b):
Comparison of closed-loop state trajectory for various sensor
locations. Plot (c): Comparison of the actuator scheduling
policies for different sensor locations. Plot (d): Comparison of
the sampling times for different sensor locations.

Table 1. Cost comparisons for different sensor loca-
tions.

zs performance cost sampling cost total cost
π/2 2410.2 20.63 2430.8
π/5 2165.2 16.10 2181.3
π/10 1865.5 13.60 1879.1

for various sensor locations. Fig.4(b) shows that the sensor
location slightly affects the closed-loop state trajectory.
However, it does influence the optimal actuator schedule
as can be seen in Fig.4(c); and moving the sensor away
from the center helps reduce the sampling frequency as
can be seen from Fig.4(d). Regarding the optimal actuator
schedules, it can be seen from Fig.4(c) that all schedules
start at the middle location which is the one that optimizes
control performance (recall that the performance cost
dominates over the sampling cost initially). However, as
the closed-loop state converges close to the steady-state
the sampling cost becomes increasingly important, and
as a result the actuator location begins to gradually shift
closer to the boundary. This transition occurs earlier (with
more frequent switchings thereafter) as the sensor is moved
closer to the boundary. Table 1 summarizes the cumulative
costs (based on the true response over the entire simulation
time) for different sensor locations. Placing the sensor at
zs = π/10 reduces both the performance and sampling
costs, which is consistent with the discussion in Section
6.1.
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