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Abstract: Reliable and timely diagnosis of system faults under uncertainties is imperative
for safe, reliable, and profitable operation of technical systems. This paper presents an input
design method for active fault diagnosis for nonlinear systems that are subject to probabilistic
model uncertainty and stochastic disturbances, and are under operational constraints. A
computationally efficient sample-based method is presented for joint propagation of model
uncertainty and stochastic disturbances using non-intrusive generalized polynomial chaos and
unscented transformation. A tractable sample-based distance measure, inspired by the k-nearest
neighbors algorithm, is used for fault diagnosis, which seeks to discriminate between probabilistic
predictions of the model hypotheses for normal and faulty operation. Simulation results on a
benchmark bioreactor case study demonstrate the effectiveness of the proposed input design
method for reliable fault diagnosis under uncertainty through online model discrimination.

Keywords: Input design, joint propagation of probabilistic model uncertainty and stochastic
disturbances, generalized polynomial chaos, unscented transformation.

1. INTRODUCTION

Fault detection and diagnosis is instrumental for reliable
and profitable operation of technical systems to prevent
safety hazards and economic losses (Nikoukhah, 1998).
The majority of reported fault diagnosis methods are pas-
sive, that is, fault diagnosis is performed by comparing his-
torical data with system measurements under nominal op-
eration (Patton and Chen, 1997; Chiang et al., 2000; Ding,
2008; Campbell and Nikoukhah, 2015). However, system
uncertainty due to incomplete knowledge of system dy-
namics, exogenous disturbances, and measurement noise,
as well as the corrective action of feedback controllers, can
impede reliable fault diagnosis by masking the effects of
faults on system measurements (Blanke et al., 2006). These
considerations have motivated the development of active
fault diagnosis (AFD) methods, which use a set of model
hypotheses for normal and faulty operation to design an
optimal auxiliary input signal that enhances diagnosability
of faults in the presence of system uncertainty (Blanke
et al., 2006; Campbell and Nikoukhah, 2015).

Two of the key challenges in AFD for stochastic systems
include: (i) efficient propagation of probabilistic uncer-
tainty, particularly in the case of joint model uncertainty
and disturbances, and (ii) derivation of tractable AFD
criteria for reliable fault diagnosis. For stochastic linear
systems, Zhang (1989) introduced a pioneering probabilis-
tic AFD method. Blackmore and Williams (2006) pre-
sented a tractable AFD method for handling additive
stochastic disturbances by minimizing an upper bound
on the probability of model misdiagnosis. Zonotopes are
used for guaranteed fault diagnosis for set-based uncertain-
ties (Scott et al., 2016). AFD for nonlinear systems with

probabilistic model uncertainty is addressed in (Mesbah
et al., 2014), where generalized polynomial chaos (Xiu and
Karniadakis, 2002) is used for uncertainty propagation.
Paulson et al. (2017) developed an AFD method that
minimizes a measure of the Bayes risk of fault misdiagno-
sis by simultaneously propagating stochastic disturbances
and model uncertainty. A review of AFD methods can be
found in (Heirung and Mesbah, 2018).

This paper presents a sample-based AFD formulation for
nonlinear systems with probabilistic model uncertainty
and stochastic disturbances. To this end, non-intrusive
generalized polynomial chaos (gPC) is combined with un-
scented transformation (UT) (Wan and van der Merwe,
2000) using conditional probability rules to jointly prop-
agate both sources of uncertainty. The proposed sample-
based uncertainty propagation method, which draws from
the benefits of gPC and UT for handling model uncertainty
and disturbances, respectively, is particularly suitable for
optimization, since it can approximate the statistics of
system variables with a fairly small number of samples that
are chosen systematically. Inspired by the k-nearest neigh-
bors scheme, classically used for data clustering (Fix and
Hodges, 1951; Cover and Hart, 1967), the AFD criterion
is defined in terms of a sample-based measure of distance
between probabilistic predictions of model hypotheses for
the normal and faulty system operation. The AFD cri-
terion does not require the generation of histograms and
thus circumvents the need for histogram binning, the ac-
curacy of which is subject to the heuristic choice of bin
number. The performance of the proposed AFD method
is demonstrated on a continuous bioreactor case study for
online diagnosis of multiple operation scenarios.
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2. PROBLEM STATEMENT

Consider a continuous-time, nonlinear system described by

M :

{
ẋ(t) = f(x(t),θ,u(t),w(t)),
y(t) = h(x(t),θ,v(t)),

(1)

where t is time; x ∈ Rnx is the states with initial
conditions x; u ∈ Rnu is the inputs; y ∈ Rny is
the measurable outputs; w ∈ Rnw is the time-varying
system disturbances; θ ∈ Rnθ is the time-invariant model
parameters; and the nonlinear functions f and h describe
the system dynamics. The system model (1) is uncertain
due to inadequate knowledge of parameters θ and initial
conditions x0, described by the distributions P (θ) and
P (x0), respectively. The probabilistic model uncertainty
is denoted by Θ = [θ>x

>]>, which can be expressed
in terms of standard random variables ξ ∈ Rnξ , with
nξ ≤ nθ + nx (i.e., Θ(ξ)).

The system is subject to input constraints u(t) ∈ U ⊆ Rnu,
as well as state constraints x(t) ∈ X ⊆ Rnx that are
enforced as the chance constraint

P(x(t) ≤ X ) ≥ α (2)

due to the probabilistic evolution of states. In (2), α is the
permitted probability of state constraint violation. When
all uncertainties in (1) are bounded and α is set to 1, the
state constraints can be enforced as hard constraints for
all uncertainty realizations.

Let there be a given number of model hypotheses of
form (1) to describe the system dynamics under nominal
and faulty operation, i.e., M = {M0,M1, . . . ,Mnm},
where the subscripts indicate the model number. The
nominal system operation is denoted by model M0, while
the faulty scenarios are denoted by {Mi}nmi=1. All models
Mi ∈ M are assumed to have the same inputs u and
outputs y. This paper presents a method for active fault
diagnosis of the stochastic nonlinear system (1) through
designing the input u. The AFD problem is stated as
follows.

Problem 1 (Active fault diagnosis). For the fault
diagnosis horizon t ∈ [0, T ], design an input profile u(t)
such that the predicted distributions of the model outputs
are separated at least at one measurement time instant
while the input constraints u(t) ∈ U and state chance
constraints (2) are satisfied over the diagnosis horizon
[0, T ] for all Mi ∈M.

The designed input profile is applied to the system to
compare the system measurements with the predictions
of the competing models (i.e., nominal and faulty). This
enables invalidating the model hypotheses that cannot
describe the system behavior adequately. Note that AFD
is commonly performed in an open-loop setting, where
the input profile is designed offline and then applied
to the system. Alternatively, the input profile can be
designed online through recursive solution of the AFD
problem in a receding-horizon manner. This allows for
(partly) counteracting the effects of unmodeled system
uncertainties and disturbances (Paulson et al., 2017).

The challenges of solving Problem 1 in light of the proba-
bilistic model uncertainty and stochastic disturbances are
two-fold. The first challenge stems from joint propagation
of model uncertainty Θ and stochastic disturbances w(t)

through the nonlinear system models. The second chal-
lenge arises from deriving a tractable measure that quan-
tifies dissimilarity between the probabilistic model predic-
tions. 1 In this work, the first challenge is addressed by
proposing a sample-based propagation method based on
non-intrusive gPC and UT, which are respectively suitable
for the propagation of time-invariant uncertainties and
time-varying stochasticity in (1) (Section 3). To alleviate
the need to approximate the full distribution of model
outputs (Martin-Casas and Mesbah, 2016), or evaluate
their statistical moments (Paulson et al., 2017), the model
discrimination criterion in the AFD problem is defined in
terms of the distance between the k closest samples of the
outputs predicted by the different model hypotheses. This
choice of the model discrimination criterion significantly
simplifies the formulation of the input design problem. The
proposed uncertainty propagation method and model dis-
crimination criterion are used to derive a computationally
tractable surrogate for Problem 1, which is amenable to
online solution (Section 4).

3. PROPAGATION OF MODEL UNCERTAINTY AND
STOCHASTIC DISTURBANCES

The most widely-used uncertainty propagation methods
typically consider one source of uncertainty: either the
time-invariant uncertainty in Θ (Nagy and Braatz, 2007),
or time-varying stochastic disturbances w(t) (Darlington
et al., 2000; Wan and van der Merwe, 2000; Caflisch,
1998). We present an efficient uncertainty propagation
method that considers both sources of uncertainty in (1).
The key notion of the proposed method is to decouple
the propagation of probabilistic uncertainty in the model
parameters and initial conditions from the propagation
of stochastic disturbances using conditional probability
rules, so that different methods that are best-suited for
handling each uncertainty source can be adopted. To this
end, UT (Wan and van der Merwe, 2000) is used for
propagation of stochastic disturbances conditioned on a re-
alization of model uncertainty Θ, which is then integrated
over different realizations of model uncertainty using non-
intrusive gPC (Xiu and Karniadakis, 2002). This results in
a sample-based method for joint propagation of stochastic
disturbances and model uncertainty, as described below.

3.1 Unscented transformation for propagation of stochastic
disturbances conditioned on model uncertainty

Unscented transformation, originally developed for non-
linear state estimation, is a heuristic-based method for
propagation of samples of time-varying stochastic uncer-
tainty through nonlinear dynamics (Wan and van der
Merwe, 2000). The UT method can effectively deal with
nonlinearities, as it does not require linearization of the
nonlinear system equations and thus computation of Ja-
cobian. The UT method consists in the propagation of a
relatively small number of deterministically-chosen sam-
ples (known as sigma points), centered around the mean
of states, through the system dynamics. In this work,

1 Another computational challenge in solving Problem 1 arises from
the state chance constraint (2), which is computationally intractable
in general (Calafiore and El Ghaoui, 2006; Nemirovski and Shapiro,
2006). Chance constraint approximation is not addressed here.
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the UT method is used for the propagation of stochastic
disturbances w(t) in (1) given a realization of the model
uncertainty Θ(ξ).

Denote the sigma points conditioned on a given realization
of model uncertainty by S(t; ξ). Let m(t; ξ) and V (t; ξ) be
the mean and covariance of the states conditioned on a
realization of the standard random variables ξ. A set of
2n+ 1 sigma points {Si(t; ξ)}2ni=0 is defined as

S0(t; ξ) = m(t; ξ),

Si(t; ξ) = m(t; ξ) +
(√

(n+ λ)V (t; ξ)
)
i
, i = 1, . . . , n,

Si(t; ξ) = m(t; ξ)−
(√

(n+ λ)V (t; ξ)
)
i
, i = n+ 1, . . . , 2n,

where n = nx+nw; (A)i is the ith column of matrix A; and
λ is a scaling parameter. The sigma points {Si(t; ξ)}2ni=0
are propagated through the nonlinear system dynamics
(1) to obtain the propagated points {Pi(t; ξ)}2ni=0 that
characterize the distribution of the states, conditioned on
ξ, in terms of the mean and covariance

mP(t; ξ) ≈
2n∑
i=0

Wm
i Pi(t; ξ),

VP(t; ξ) ≈
2n∑
i=0

W c
i

(
Pi(t; ξ)−mP(t; ξ)

)(
Pi(t; ξ)−mP(t; ξ)

)
.

The mean weights {Wm
i }2ni=0 and covariance weights

{W c
i }2ni=0 are defined as

Wm
0 =

λ

n+ λ
,

W c
0 =

λ

n+ λ
+ (1− α2 + β),

Wm
i = W c

i =
1

2(n+ λ)
, i = 1, . . . , 2n,

where α determines the spread of sigma points around
the mean and β accounts for prior knowledge of the state
distribution (Wan and van der Merwe, 2000).

The computational complexity of the UT method scales
linearly with the dimension of the stochastic disturbances
nw, as UT relies on 2n + 1 function evaluations; that is,
one function evaluation per sigma point. This can result in
considerable computational speed-up in comparison with
Monte Carlo-based sampling methods (Caflisch, 1998).

3.2 Non-intrusive polynomial chaos for propagation of
model uncertainty of sigma points

Disturbance propagation based on UT yields the (prop-
agated) sigma points {Pi(t; ξ)}2ni=0 that are conditioned
on model uncertainty. We now employ gPC to integrate
the sigma points over the probabilistic model uncertainty
Θ(ξ). gPC consists in approximating a stochastic variable,
the sigma points Pi, with the truncated expansion

Pi(t; ξ) ≈
L∑
k=0

P̃i,k(t)Φk(ξ), (3)

where P̃i,k denotes the expansion coefficients of sigma
point Pi, which evolve as a function of system dynamics;
and Φk denotes multivariate polynomial basis functions
constructed from the univariate polynomial basis functions
of the individual random variables ξj

Φk(ξ) =

m∏
j=1

φ
(j)

α
(i)
j

(ξj), α
(i)
j ∈ {0, 1, . . .}, ∀j = {1, . . . ,m},

with α
(i)
j being the jth element of a multi-index whose

value corresponds to the order of the basis of the jth
random variable in the ith multivariate polynomial basis.
The univariate polynomials φ belong to the Askey-Wiener
scheme of polynomials, so that each univariate polynomial
has an optimal convergence rate with respect to ξj (Xiu
and Karniadakis, 2002). The truncation order in the gPC

expansion (3) is defined by L + 1 =
(nξ+m)
m!nξ!

, where

m denotes the prespecified degree of the multivariate
polynomial basis and nξ denotes the dimension of Θ(ξ).
An important property of the polynomial basis functions
in the Askey-Wiener scheme, key to the computational
efficiency of gPC, is their orthogonality with respect to the
multivariate distribution of ξ. Note that the polynomials
Φk(ξ) are constructed only once, merely based on the
known distribution of Θ(ξ).

Evaluation of the gPC expansions for each of the 2n + 1
sigma points requires computation of the coefficients P̃i,k
in (3), which can be done using intrusive or non-intrusive
methods (Kim et al., 2013). In this work, we adopt the non-
intrusive method, which hinges on evaluating the system
model at given samples of model uncertainty {Θ(ξ(i))}nsj=1.
This enables estimating the gPC coefficients as a weighted

sum of the samples {P(j)
i (t, ξ(j))}nsj=1P̃i,0(t)

...

P̃i,L(t)

 =

Π0,1, . . . ,Π0,ns
...

. . .
...

ΠL,1, . . . ,ΠL,ns


 P

(1)
i (t; ξ(1))

...

P(ns)
i (t; ξ(ns))

 , (4)

where the weights Πk,j describe the effect of the sigma

point samples {P(j)
i }

ns
j=1 on the expansion coefficients

P̃i,k for k = 0, ..., L. Note that the sigma point samples
are simply determined by evaluating the sigma points
{Pi(t; ξ)}2ni=0 for the uncertainty realizations {ξ(j)}nsj=1.
The non-intrusive method can be used irrespective of the
form and complexity of the nonlinear model equations.

In this work, the weight matrix in (4) is defined in terms
of least-squares estimation of the expansion coefficients

Π = (Λ>Λ)−1Λ>,

with Λ given by (see Paulson and Mesbah (2017))

Λ =


Φ0(ξ(1)) Φ1(ξ(1)) · · · ΦL(ξ(1))

Φ0(ξ(2)) Φ1(ξ(2)) · · · ΦL(ξ(2))
...

... · · ·
...

Φ0(ξ(ns)) Φ1(ξ(ns)) · · · ΦL(ξ(ns))

 .
The model uncertainty sample set {ξ(j)}nsj=1 can be se-
lected as the roots of the polynomial basis of one degree
higher (m+ 1), so that the number of uncertainty samples

is ns =
(nξ+m+1)!
nξ!(m+1)! . Due to the optimal choice of the poly-

nomials in (3) with respect to the multivariate distribution
of ξ, non-intrusive gPC requires a relatively small number
of samples to propagate the model uncertainty Θ.
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3.3 Joint propagation of model uncertainty and disturbances

Joint propagation of the probabilistic model uncertainty
and stochastic disturbances entails expressing each one of
the 2n + 1 sigma points {Pi(t; ξ)}2ni=0 as the gPC expan-

sion (3). Evaluating the coefficients P̃i,k(t) using the non-
intrusive method in (4) requires computing the conditional
sigma points {Pi(t; ξ)}2ni=0 at ns samples of the model un-
certainty, i.e., {ξ(j)}nsj=1. Thus, the proposed sample-based
uncertainty propagation method uses a total of ntot =
(2n+1)×ns samples for the joint propagation of probabilis-
tic model uncertainty and stochastic disturbances, yielding
the total sigma points {Ps(t)}ntot

s=1 = {Pi(t; {ξ(j)}nsj=1)}2ni=0.

4. TRACTABLE FORMULATION FOR ACTIVE
FAULT DIAGNOSIS

We now present a tractable criterion for AFD that readily
uses the total sigma points {Ps(t)}ntot

s=1 , alleviating the
need to either construct the distribution of the model
outputs, or evaluate their statistical moments. To enable
probabilistic model discrimination, the AFD criterion is
defined as a measure of the distance between the sigma
points belonging to the competing model hypotheses in the
model set M. The distance measure used here is inspired
by the k-nearest neighbors (KNN) algorithm (Cover and
Hart, 1967), which computes the distance between the
sigma points of a model Mi to the k closest sigma points
of other models in M. Maximization of the kNN distance
between the sigma points of the model hypotheses in M
will lead to separation of the output distributions, thus
enhancing fault diagnosability.

Let {P(l)
i (t)}ntot

i=1 and {P(o)
j (t)}ntot

j=1 denote the total sigma
points corresponding to the model hypotheses Ml and Mo,
respectively. The L2 distance between each sigma point
of Ml to every sigma point of Mo is computed, and the
indices of the k closest sigma points of Mo to each sigma
point of model Ml are stored. After iterating over all
points of model Ml, a total of ts = kntot pairs of sigma
points are obtained. Let {(p1, q1), ..., (pts , qts)} denote the
stacked indices of the k closest sigma points of model
Mo to each sigma point of model Ml. The kNN measure
of probabilistic discrimination between the two models is
defined as

d(l,o)(t) =

(pts ,qts )∑
(p=p1,q=q1)

(
‖P(l)

p (t)− P(o)
q (t)‖2

)
,

which quantifies the distance between ts pairs of sigma
points predicted by models Ml and Mo. For the multiple
model hypotheses in the model set M, the AFD criterion
can now be defined as

J =

nm∑
l=0

nm∑
o=0,l 6=o

wl,od
(l,o)(t), (5)

where the weights wl,o are user-specified. For example,
wm,n = ( 1

nm
) when uniform weights are used for discrim-

ination between all models. The AFD criterion (5) allows
for handling multiple model hypotheses and tuning the im-
portance of probabilistic discrimination between different
model-hypothesis pairs. The tractable surrogate problem
for the AFD Problem 1 can now be formulated as follows.

Problem 2 (Tractable AFD). For the fault diagnosis
horizon t ∈ [0, T ] and the (possibly uncertain) initial states
x, the active fault diagnosis for the stochastic nonlinear
system described by (1) with model hypothesesM involves
solving the nonlinear optimization problem

max
u(t)

J

subject to the propagation of the total sigma points

{P(l)
i (t)}ntot

i=1 for all model hypotheses l = 0, 1, . . . , nm in
M, the input constraints u(t) ∈ U , and an approximation
of the chance constraint P(x(t) ≤ X ) ≥ α.

Remark 1. The tractable AFD Problem 2 can be solved
online using system measurements obtained at every sam-
pling point to account for the effects of unmodeled system
uncertainties. This requires recursive estimation of the
initial states as well as the model probabilities for all model
hypotheses in M at every sampling point via Bayesian
estimation (Paulson et al., 2017).

5. CASE STUDY

The proposed AFD method is demonstrated on a bioreac-
tor (Henson and Seborg, 1992). Assuming constant reac-
tion volume, the system dynamics are described by

dX = (−DX + µX) dt+ σXdwX(t), (6a)

dS =

(
D(Sf − S)− 1

YX/S
µX

)
dt+ σSdwS(t), (6b)

dP = (−DP + (αµ+ β)X) dt+ σP dwP (t), (6c)

where X, S, and P are the concentration of biomass,
substrate, and product, respectively; D is the dilution rate,
which is the only process input; Sf is the substrate concen-
tration in the inlet feed; 1

YX/S
is the yield of biomass per

unit substrate consumed; α and β are yield parameters;
and wX , wS , and wP are independent, zero-mean Wiener
processes scaled by standard deviations σX , σS , and σP ,
respectively. µ is the rate of biomass growth as a function
of the substrate concentration

µ =
µmaxS

KM + S
, (7)

where µmax is the maximum growth rate and KM is an
affinity constant. The initial conditions of (6) and the
model parameters are taken from Henson and Seborg
(1992). µmax is the only uncertain model parameter, which
is described by a Gaussian distribution with mean 0.6 h−1

and variance 0.05.

Three scenarios for process operation are considered. The
nominal process operation is described by (6). The two
process fault scenarios include: (i) substrate inhibition
in which the biomass growth and hence product yield
are hampered by excess concentrations of substrate, and
(ii) a decrease in 20% in the substrate in the inlet feed
(Sf = 0.8Sf ). In the substrate inhibition case, the biomass
growth rate µ takes the form

µ =
µmaxS

KM + S
(

1 + S
KI

) , (8)

where KI is the affinity constant specifying the extent of
growth inhibition; set to 1 g/L here.

The performance of the AFD method is benchmarked
against a deterministic AFD method that merely mini-
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Fig. 1. Predicted distributions of product concentration
at time 2 h obtained using the input designed by (a)
the proposed AFD method and (b) the deterministic
AFD method (based on 500 Monte Carlo runs).
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Fig. 2. Input profiles designed by (a) the proposed AFD
method and (b) the deterministic AFD method.

mizes the L2-norm between the mean of the model out-
puts. Fig. 1 shows the distributions of the product concen-
tration at time 2 h predicted by the three process models
under the input profiles designed by the proposed AFD
and the deterministic AFD methods. The distributions
are constructed based on 500 Monte Carlo runs using
the designed input profiles. As can be seen, the proposed
AFD method enables discriminating between the three
model hypotheses more effectively. This is because the
AFD method can reduce the variance of the outputs, which
can in turn reduce the overlap between the outputs of
the competing models in the presence of process uncer-
tainties. On the other hand, even though deterministic
AFD can increase the absolute distance between the means
of the output distributions, it cannot effectively reduce
the overlap between the distributions to enhance fault
diagnosability. The optimal input profiles designed by both
AFD methods are shown in Fig. 2. The input designed
by the proposed method maintains near maximal dilution
rate until approximately 0.5 h, after which it gradually
decreases until reaching zero dilution rate at the end of
the diagnosis horizon. The input designed via deterministic
AFD, on the other hand, maintains maximum dilution rate
until it is abruptly decreased to near zero values at around
time 1 h. Fig. 2 suggests that deterministic AFD results in
more process stimulation, while the fault diagnosis is less
effective due to the overlap of the output distributions.

Inspired by industrial practice, the proposed AFD method
is implemented in an online setting in which the AFD

Problem 2 is solved repeatedly every 6 min when the
product concentration is measured (see Paulson et al.
(2017) for the online AFD algorithm). The results of online
AFD are shown in Fig. 3. The process is initially at
steady state. At time 2 h, a fault in the concentration
of substrate in the inlet feed becomes active. The fault
results in deviation of the product concentration from
its desired setpoint (P = 27 g/l). At time 4 h, online
AFD is initiated for a period of approximately 2 h. As
can be seen, the probability of detecting the active model
increases dramatically during this period until reaching a
probability of approximately 1. When the correct scenario
of process operation is diagnosed at time 6 h, the process
input is adjusted based on the diagnosed operational sce-
nario, which is different from the nominal process input
(Fig. 3d). The adjusted process input enables recovering
the product concentration to its desired setpoint (Fig. 3a).
If the fault remained undiagnosed and the nominal process
input continued to be applied, the concentration of prod-
uct (dashed line in Fig. 3a) would continue to deviate from
the desired setpoint. The results of this case study clearly
demonstrate the significance of online AFD for effective
process operation in the event of faults.

6. CONCLUSIONS

A tractable formulation for active fault diagnosis that can
handle probabilistic model uncertainty and stochastic dis-
turbances is presented. A sample-based uncertainty prop-
agation method is proposed for joint propagation of time-
invariant model uncertainty and time-varying disturbances
using non-intrusive generalized polynomial chaos and un-
scented transformation. For probabilistic discrimination
between multiple model hypotheses, the fault diagnosis
criterion is defined in terms of the samples of the model
outputs, preventing the need to build output distributions,
or compute their statistical moments. The computational
efficiency of the proposed active fault diagnosis method
enables its online implementation to mitigate the effects of
unmodeled system uncertainties on reliable fault diagnosis.
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