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Abstract: Stiction in control valves is considered one of the most common causes of poor performance
in control loops. Thus, non-invasive, reliable and efficient methods which can detect and quantify this
malfunction are highly desirable in the process industry. Under the framework of Hammerstein model
identification and nonlinear optimization, this paper proposes an approach to estimate stiction amount
on the basis of a recently proposed smoothed model. One of the motivations of the work is to improve
the performance of a stiction unaware model predictive controller which exhibits sustained oscillations
in the presence of valve stiction. By augmenting process model with the identified valve dynamics, the
controller is turn to a stiction embedding formulation which can actually remove fluctuations and then
guarantees good set-point tracking. Applications to simulation case studies and industrial loops are used
to demonstrate the validity of the proposed method. Results are compared with a standard grid-search
approach and other identification techniques of the literature.
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1. INTRODUCTION

Stiction is now a well-known source of performance degra-
dation in industrial control loops, caused by excessive static
friction between the stem and packing in the control valve. The
major consequence is the presence of sustained oscillations in
process variables, which lead to shorter life of control valves,
and then inferior quality end-products and minor profitability
of whole industrial plant (Jelali and Huang, 2010). These limit
cycles appear when a traditional controller with integral compo-
nent is used, as an excessive control action is imposed while the
valve is sticking, so that the valve jumps between two extreme
positions, above and below the desired operating point.

It is well established that controller retuning, both in PID and
MPC configuration, can help to reduce amplitudes and frequen-
cies of oscillation (Ale Mohammad and Huang, 2012), but per-
formance degradation is prone to recur as the process dynamics
changes or different operation conditions are set. In addition, it
has to be noted that even the standard offset-free formulation of
a model predictive controller (MPC) cannot completely address
valve stiction, whether the valve malfunction is not expressly
considered in the plant model. In these cases, the disturbance
estimate is not zero, but shows sustained oscillations which
unavoidably propagate to other loop variables.

In a recent work, Bacci di Capaci et al. (2017) observed that
stiction embedding MPC is a valid solution which guarantees
good set-point tracking ability and stiction compensation. Fair
robustness has been demonstrated, but performance tend ob-
viously to deteriorate once stiction is unmodeled or when a
parameters mismatch is present. Therefore, a suitable model for
valve dynamics and a good estimate for stiction parameters are
required.

This paper is hence focused on a reliable and efficient approach
to estimate valve stiction amount, on the basis of a recently pro-
posed smoothed model, under the framework of Hammerstein
model identification and nonlinear optimization. The remainder
of the work is organized as follows. Preliminaries about prob-
lem definition, valve stiction modeling and quantification are
given in Section 2. The proposed identification and estimation
method is described in Section 3. Some numerical examples
are then presented in Section 4, while applications to industrial
data are shown in Section 5. Finally, conclusions are drawn in
Section 6.

2. PROBLEM DEFINITION

The plant under study is formed by the control valve followed
by the process dynamics as depicted in Figure 1. In detail,
χ is the valve stiction output, that is, process input; y is the
process output; u is the output of a generic (e.g. PID or model
predictive) controller, and v is a white Gaussian output noise.
For the sake of simplicity, the case of SISO system is presented:

Fig. 1. The closed-loop system with the sticky control valve
followed by the process.

a nonlinearity for the valve stiction followed by a linear dynam-
ics for the process, thus forming a Hammerstein structure for
the whole plant. Investigation of MIMO systems and nonlinear
processes are beyond of our current scope, although a gener-
alization is possible. Valve dynamics is described by a data-
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driven stiction model, while the linear process dynamics can be
expressed by ARX, ARMAX, or state-space model.

For example, the whole plant dynamics in standard state-space
formulation can be written as:

zk+1 = f (zk,uk)

yk = h(zk)+ vk
(1)

The valve output χ represents the first component of the state
vector of whole plant zk = [χk−1,ξk]

T , so that:

zk+1 =

[
χk

ξk+1

]
=

[
ϕ(χk−1,uk)

Aξk +Bϕ(χk−1,uk)

]
yk = Cξk + vk

(2)

where ξ ∈ Rn is the process state vector, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, being n the process model dimension, and m = p =
1. Note that the first component of state equation is given by the
stiction nonlinearity, expressed by the discontinuous function
ϕ(·): Rm×Rm→ Rm, later discussed.

2.1 Stiction Modeling

Stiction in pneumatic sliding stem control valves can be de-
scribed both by detailed physical models and by empirical
(data-driven) models (Garcia, 2008). For practical purposes,
only the latter are actually useful, as few parameters and rel-
atively simple algebra are involved. The most established data-
driven models have been proposed by Choudhury et al. (2005),
Kano et al. (2004) and He et al. (2007). Only two parameters
are used: the sum of stickband and deadband (S), and the stick-
slip jump (J) for first two models; the dynamic ( fD) and static
( fS) friction in the third one. The aforesaid standard empirical
model and the semi-physical model (He and Wang, 2010) by
He and coworkers have been proved suitable to reproduce the
valve response generated by physical stiction models without
involving computationally intensive numerical integration. In
these models, fast response from the valve is assumed, so that
the transient dynamics can be ignored and a static – but with
memory – nonlinear function can be used, that is, only the
stationary-state values of stem position are considered.

A discontinuous model. In He’s standard data-driven model
(He et al., 2007), the sticky valve has a nonlinear dynamics
χk = ϕ(χk−1,uk) expressed by the following two relations:

χk =

{
χk−1 +[ek− sign(ek) fD] if |ek|> fS

χk−1 if |ek| ≤ fS
(3)

where fS and fD are static and dynamic friction parameters,
respectively, and ek = uk−χk−1. Note that ek can be interpreted
as the valve position error, while fS ≥ fD by definition. By
substituting ek, then by expanding the nonlinear sign function,
and finally by solving the inequalities, the valve dynamics can
be rewritten as:

χk =


uk− fD if uk−χk−1 > fS

uk + fD if uk−χk−1 <− fS

χk−1 if |uk−χk−1| ≤ fS

(4)

Therefore, the stiction nonlinearity ϕ(·) is formed by a set of
three linear and parallel relations, thus constituting a sort of
switching “multi-mode” model, which, when identified along
with the process dynamics, acts as a discontinuous model.

The smoothed model. Due to the presence of if-else state-
ments which imply two hard discontinuities in the input-output
relation of the valve, He’s model involves stiff equations that
might represent a difficult task into the optimization problem
used in identification. Therefore, the smoothed stiction model
introduced by Bacci di Capaci et al. (2017) is used in this work
in order to get a smoother problem. Model (4) is expressly
approximated by using a single smoothing function ϕS(·):

χk = η1(ek)χk−1 +(1−η1(ek))uk +η2(ek) fD (5)
where η1(ek) and η2(ek) are the sum of two hyperbolic func-
tions, defined as below:

η1(ek) =
1
2

tanh(τ(ek + fS))+
1
2

tanh(τ(−ek + fS))

η2(ek) =
1
2

tanh(−τ(ek + fS))+
1
2

tanh(τ(−ek + fS))
(6)

where τ is a smoothing parameter, such that the higher is its
value, the larger is the sharpness of the functions. Extensive
simulations have verified that, using τ ≥ 104, the valve sig-
nature given by the proposed smoothed model (5) matches
exactly the original He’s model results. It is to be noted that
the proposed identification method can be applied with other
smoothed stiction models based on the various discontinuous
models available in the literature.

2.2 Stiction Quantification

The ability of providing an estimate of stiction amount is a
crucial step for shortlisting the most critical valves, schedul-
ing valve maintenance, or performing on-line compensation.
Methods available in the literature can be broadly divided into
four main categories: apparent stiction techniques (Choudhury
et al., 2006), Hammerstein-based methods (e.g., Srinivasan
et al. (2005); Choudhury et al. (2008); Jelali (2008); Bacci
di Capaci and Scali (2014); Bacci di Capaci et al. (2016)),
nonlinear process model-based methods (e.g., Wang and Wang
(2009); Romano and Garcia (2011)), mixed approaches (e.g.,
Zabiri et al. (2009); Araujo et al. (2012); He and Wang (2014)).
Some techniques perform detection and quantification of valve
stiction in a single stage, while other methods can be applied
only once stiction is clearly detected by suitable methods.

Among others techniques, the methods of Jelali (2008) and
Farenzena and Trierweiler (2012) used global and gradient-free
optimization approaches. The first one implemented genetic
and path search algorithms, but, despite being quite robust,
high computational times are required. The second proved to
be an improvement as one-stage identification is performed by
means of a deterministic algorithm that is no longer dependent
on the initial guess, obtained via the ellipse fitting method of
Choudhury et al. (2006).

3. THE PROPOSED METHODOLOGY

In this section the proposed stiction identification and quantifi-
cation method is detailed. The linear part of the Hammerstein
model has an ARX structure in discrete-time form:

A(q)yk = B(q)χk−td + vk (7)
where A(q) and B(q) are polynomials in backward shift opera-
tor q−1 (i.e. such that χk = q−1 χk+1), vk is white noise, and td
is the input time-delay of the process. The two polynomials are
expressed as:

A(q) = 1+a1q−1 +a2q−2 + . . .+anaq−na

B(q) = b1q−1−td +b2q−2−td + . . .+bnbq−nb−td
(8)
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where (na,nb) are the orders on the auto-regressive and exoge-
nous terms, respectively. The nonlinear part of process model
employs the aforesaid smoothed stiction model (5).

Optimization variables X are static and dynamic friction of
(5) and na + nb coefficients of ARX process model (7), that
is, X = [ f̂S, f̂D, θ̂

T ]T , being θ = [a1, . . . ,ana ,b1, . . . ,bnb ]
T . The

nonlinear optimizer finds an optimal solution starting from a
suitable initial point X0. In particular, vector coefficients of
process dynamics θ is initialized by performing a first-guess
identification with an ARX model between controller output
u and process variable y, that is, no valve stiction is firstly
assumed. Hence, θ̂0 is calculated by:

θ̂0 = pinv(Φ0)y = [ΦT
0 Φ0]

−1
Φ

T
0 y (9)

where Φ0 ∈ RN×na+nb is the initial regressor matrix of the
measurements, computed by stacking singular linear regressor
vectors φ0,k at each sample time k:

φ0,k = [−yk−1, ...,−yk−na ,uk−1−td , ...,uk−nb−td ] (10)
where N is the number of data points.

The one-stage nonlinear optimization problem is then formu-
lated as follows:

X∗ = arg min
fS, fD,θ

SE(y, ŷ)

subject to:
(11a)

fmin ≤ fS, fD ≤ fmax

fS ≥ fD (11b)

σ
2(χ̂)≥ σ

2
min

The objective function is the Square Error (SE) between the
output of actual process and of identified model ŷ:

SE(y, ŷ) = 1
2 (y− ŷ)T (y− ŷ) (12)

The output of identified model is computed as ŷ = Φθ̂ , where
Φ ∈RN×na+nb is the regressor matrix built by stacking singular
regressor vectors at each sample time, with values of valve
position χ̂ estimated from the nonlinear model, i.e.:

φk = [−yk−1, . . . ,−yk−na , χ̂k−1−td , . . . , χ̂k−nb−td ] (13)

Note that stiction parameters domain has a triangular shape:
fmax ≥ fS ≥ fD ≥ fmin = 0. Indeed, the so-called overshoot
stiction cases are excluded, since waveforms generated by these
parameters combinations are rarely observed in practice. The
largest value of stiction parameters can be assumed equal to
the oscillation span of controller output: fmax = ∆u. As known,
under boundary conditions, when fS+ fD =∆u, the valve jumps
between two extreme positions, thus generating an exactly
square-shaped signal.

The other constraint is imposed on σ2(χ̂), the variance of
identified valve position χ̂ . This is done to avoid uncommon
waveforms, that is, identified valve position cannot be fully or
mostly steady, but is forced to oscillate due to the presence
of stiction. A safe choice is considering the controller output
variance, e.g. σ2

min = ασ2(u), with α = 0.1. Finally, note that
time-delay td and model orders are assumed as parameters in
the proposed formulation. An iterative approach may be derived
by repeating the optimization procedure for a set of time-delays
and various model orders.

In this work, analysis have been performed on a code written
in Python 2.7 with the use of symbolic framework offered by
CasADi 3.1. As nonlinear programming solver, the optimiza-
tion problem implements IPOPT, a well-established interior
point algorithm (Wächter and Biegler, 2006).

Finally, note that in order to avoid to be stuck in a local
minimum, a multiple starting algorithm has been implemented
thus improving robustness of the optimization. The proposed
approach is hence iterated by setting M initial solutions. A good
method is starting from the boundaries of the triangular-shaped
domain of stiction parameters, by fixing a suitable step, e.g.
∆ fS = ∆ fD = 0.5. Further initial points can be obtained from
the ellipse-fitting method (Choudhury et al., 2006). An estimate
of the so-called apparent stiction S0 on the x-width of polar
plot PV(OP), that is, y(u), is computed, and a limited set of
combinations which satisfy S0 = fS + fD are added. Finally, the
best solution in terms of objective function and infeasibility is
evaluated.

4. SIMULATION ANALYSIS

The performance of proposed approach are firstly investigated
on numerical data.

Example 1. A third order transfer function for the process
model is considered:

P(s) =
1

(4s+1)(6s+1)(2s+1)
(14)

which corresponds to the following ARX process in discrete-
time form with sample period Ts = 1 and (na,nb) = (3,3):

yk = 2.232yk−1−1.645yk−2 +0.3998yk−3

+0.00277χk−1 +0.00884χk−2 +0.001752χk−3 + vk (15)
Valve stiction is described by original discontinuous He’s
model, with parameters: fS = 7, fD = 4. The output white noise
v is a random sequence with normal distribution, zero-mean and
standard deviation σ = 10−2.

Closed-loop data are generated in Python by using a model pre-
dictive controller (Vaccari and Pannocchia, 2016) and imposing
some set-point changes. In the considered stiction unaware
MPC, the Finite Horizon Optimal Control Problem (FHOCP)
solved at each time k is defined as following:

min
xxx,,,uuu

NH−1

∑
i=0

(ξi−ξs,k)
T Q(ξi−ξs,k)+(ui−us,k)

T R(ui−us,k)+

(ξNH −ξs,k)
TVF(ξNH −ξs,k) (16a)

subject to:

ξ0 = ξ̂k (16b)
ξi+1 = Aξi +Bui (16c)

yi = Cξi + d̂k (16d)
ξi ∈ X, ui ∈ U, yi ∈ Y (16e)

where NH is a positive integer representing the horizon length,
Q, R, and VF are the various penalty matrices, ξ̂ and d̂ are
the current state and disturbance estimate of the model (2),
the triple (ξs,k,us,k,ys,k) represent the steady-state values satis-
fying (2), and the triple (X,U,Y) forms the constraints set. For
more details see (Bacci di Capaci et al., 2017). Note that in
the stiction unaware MPC formulation, the valve dynamics ϕ(·)
of (2) is completely neglected and only the process model P in
the corresponding state-space form is embedded:

A =

[2.2318 −1.6450 0.7997
1.0 0 0
0 0.5 0

]
, B =

[0.125
0
0

]
,

C = [0.0222 0.0707 0.0280]

(17)
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Fig. 2. Example 1. Measured and estimated time trends.

The smoothed stiction model of (5) is used in the identification
stage, on the basis of controller output u and process variable
y. The time-delay (td = 0) and ARX model orders are sup-
posed known for the sake of simplicity. The proposed nonlinear
optimization method proves to be effective, as it obtains very
accurate stiction parameters: f̂S = 6.98, f̂D = 4.01. The corre-
sponding process parameters are identified reasonably close to
actual values:

θ̂ = [−1.195,−0.204,0.4353,0.00375,0.01094,0.01767]

Note that the computational time required is very short: about
4 s for M = 7. Figure 2 shows measured time trends and
estimated signals for a data window of sustained oscillation
with constant set-point. It is to be observed that the fitting
of process variable is high, and also the estimation of valve
position is very accurate.

The same data set is then analyzed with a traditional method
of grid-search over the space of nonlinear model parameters, as
explained by Bacci di Capaci et al. (2016). A triangular grid of
stiction parameters ( fS, fD) is built, and for each possible com-
bination valve output is generated from measured controller
output by using the smoothed stiction model (5). Then, ARX
model coefficients are identified by least-squares regression
on the basis of the generated valve output and the measured
process output. The optimal combination of stiction parameter
is evaluated as the one that minimizes the SE on process vari-
able (12). The step size of the grid is set to ∆ fS = ∆ fD = 0.5
and the true combination is included. Not surprisingly, stiction
parameters are identified exactly, but at the expense of much
higher computational time (about 150 s).

It is evident that the computational time of the proposed opti-
mization is definitely much shorter, thus offering a remarkable
advantage in on-line applications. This aspect is further investi-
gated in the following numerical example.

Fig. 3. Example 2. Process variable, controller output and valve
position for two different MPC formulations.

Example 2. Another ARX process in discrete-time form with
Ts = 1 and (na,nb) = (3,3) is considered:

yk = 2.091yk−1−1.375yk−2 +0.2725yk−3

+0.002445χk−1 +0.007181χk−2 +0.001278χk−3 + vk (18)
He’s stiction model with parameters fS = 5, fD = 2 is used
for valve dynamics, and the output white noise is a random
sequence with normal distribution, zero-mean and standard
deviation σ = 10−1.5. Closed-loop data are obtained by using
a stiction unaware MPC, based only on linear process model
in the corresponding state-space form (Bacci di Capaci et al.,
2017). Once again, the smoothed stiction model is used for the
identification stage. The time delay (td = 0) and ARX model
orders are supposed known. The following stiction parameters
are obtained f̂S = 5.02, f̂D = 1.99, with a short computational
time (about 6 s for M = 7). The identified process parameters
are not far from actual values:
θ̂ = [−1.124,−0.360,0.5112,0.002085,0.011218,0.010629]

Then, the smoothed stiction model with the newly identified
parameters is embedded in another formulation of MPC. A
stiction aware controller is thus derived by augmenting the
plant model with the estimated valve dynamics ϕ(·). Process
variable, controller output, and valve position for the two dif-
ferent MPC formulations in response to the same set-point trend
– a series of two step changes – are shown in Figure 3.
It is evident that the traditional unaware MPC formulation does
not remove fluctuations induced by stiction, as the disturbance
estimate cannot be brought to zero, but the state estimator keeps
sustained oscillations which unavoidably propagate to other
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loop variables. On the opposite, the embedding formulation
shows good set-point tracking ability and allows an effective
stiction compensation. Nevertheless, it has to be recalled that
best performance for stiction embedding MPC are not achiev-
able only by augmenting plant model with the valve dynamics
and accurate stiction parameters. As a matter of fact, also an
appropriate warm-start has to be given to the dynamic optimiza-
tion module of predictive controller, as explained in (Bacci di
Capaci et al., 2017).

5. APPLICATION TO INDUSTRIAL DATA

The proposed method is also applied to some industrial data.
Three case studies of the dataset of Jelali and Huang (2010),
illustrated as a benchmark for stiction detection methods, are
used. These loops are clearly indicated as suffering from valve
stiction by several detection methods. The obtained results
(with τ = 2.5× 102) are also compared with the estimates
given by the grid-search method described in Section 4, with
a fixed step size on both parameters: ∆ fS = ∆ fD = 0.1. In
addition, the estimates are compared with values obtained by
three well-established techniques of the literature: (Karra and
Karim, 2009; Lee et al., 2008; Jelali, 2008). Table 1 summarizes
the overall results.
CHEM 10. These data come from a pressure control loop in
a chemical process industry. The proposed method is applied
to an ARX(2,2) model with fixed time-delay (td = 0) and two
different levels of smoothing factor τ . Figure 4 shows measured
time trends and estimated signals. Karra and Karim used Kano’s
stiction model and an Extended-ARMAX model with td = 1
and (na,nb,nc) = (2,2,2). Lee et al. used an ARX(2,1) model
and standard He’s stiction model. As awaited, different methods
obtain different estimates of stiction parameters.
CHEM 25. Also these data are from a pressure control loop
in a chemical process industry. The proposed method is applied
with different ARX model orders. Figure 5 shows measured
time trends and estimated signals for (na,nb) = (2,2). Karra
and Karim employed Kano’s model and EARMAX model with
td = 1 and (n,m, p) = (2,2,2). Jelali tested the loop twice using
an ARMAX model with: (i) td = 2, (n,m, p) = (3,2,2) and (ii)
td = 1, (n,m, p) = (2,2,1). Lee et al. used an ARX(2,1) model
and He’s stiction model. Once again, the estimation results are
quite heterogeneous.
POW 4. These data are from a level control loop in a power
plant. The proposed method is applied with different ARX
model orders. Karra and Karim used an EARMAX model with
unspecified parameters applied on the initial data window (1 -
1000 samples). Jelali tested the loop using an ARMAX model
of unspecified orders, probably on the first 700 samples. Lee
et al. used an ARX(2,1) and He’s stiction model applied on
all available data. The proposed identification method is exe-
cuted on the first 1000 samples. As in previous two cases, the
estimates of stiction parameters are different for the compared
methods. Note that the proposed method always requires much
lower computational times than the grid-search technique.

As general conclusion from this section, it is worth recalling
that the exact stiction estimates depend on several issues. In ad-
dition to general aspects, e.g., the dataset used in identification,
choice of objective function, solver, and algorithms, in the case
of Hammerstein system also the following issues are important:
type, order, and time-delay of the linear process model; type of
the nonlinear stiction model.

Table 1. Results for industrial data.
Data Method St. Model (na,nb,nc) f̂S f̂D Tc [s]

CHEM 10

Proposed
smoothed (2,2) 0.16 0.06 7.0
smoothed (τ = 104) (2,2) 0.85 0.13 7.0

Grid smoothed (2,2) 1.70 0.00 141
K & K Kano (2,2,2) 0.95 0.90 -
Lee et al. He (2,1) 1.75 0.04 -

CHEM 25

Proposed smoothed
(2,1) 1.45 0.25 3.7
(2,2) 0.56 0.41 4.1
(3,2) 0.76 0.61 5.6

Grid smoothed (2,1) 1.00 0.50 48
K & K Kano (2,2,2) 1.15 0.75 -
Jelali (i) Kano (3,2,2) 1.20 0.60 -
Jelali (ii) Kano (2,2,1) 1.24 0.64 -
Lee et al. He (2,1) 3.84 0.00 -

POW 4

Proposed smoothed
(2,1) 1.93 0.08 15.1
(2,2) 0.35 0.28 19.6
(3,2) 0.53 0.45 16.7

Grid smoothed (2,1) 1.40 0.10 527
K & K Kano - 2.40 1.20 -
Jelali Kano - 3.49 1.00 -
Lee et al. He (2,1) 0.49 0.09 -

Fig. 4. CHEM 10. Measured and estimated time trends (τ =
104).

It is also to be noted that parameters of He’s model have their
equivalent in Kano’s model and vice versa, according to simple
relations: S = fS + fD and J = fS− fD, so that, fS = S+J

2 and
fD = S−J

2 . Nevertheless, these two stiction models can generate
very different outputs for a the same input sequence despite
equivalent parameters. This is one of the reasons of the different
stiction estimates obtained with different methods in Table 1.

Moreover, the way in which the stiction model is initialized
must be considered. This issue could seem a negligible aspect,
but in reality, as it has been verified by a large number of sim-
ulations and applications, it is an important point, as discussed
in (Bacci di Capaci et al., 2016) for the specific case of Kano’s
model. Also the proposed smoothed stiction model could be
initialized in several ways. In this paper, we chose to set first
valve position as first or as mean value of controller output, that
is, χ̂(0) = u(0) or χ̂(0) = ū.
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Fig. 5. CHEM 25. Measured and estimated time trends.

6. CONCLUSIONS

This paper has presented a non-invasive, reliable and efficient
method to identify stiction in control valves. By the use of
Hammerstein model and nonlinear optimization, the proposed
approach can estimate the amount of stiction parameters of a
recently proposed smoothed model. Applications to simulation
case studies and industrial loops have been employed to demon-
strate the validity of the proposed method. This technique can
be implemented in a on-line routine in order to improve the
performance of a stiction unaware model predictive controller,
which otherwise would exhibit sustained oscillations in the
presence of valve stiction. It has been also shown that by means
of the identified stiction model the MPC controller can be
eventually turned into a stiction embedding formulation, so that
fluctuations removal and good set-point tracking are possible.
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