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Abstract: In this study, we propose an extremum-seeking approach for the approximation of
optimal control problems for unknown nonlinear dynamical systems. The technique combines
a phasor extremum seeking controller with an reinforcement learning strategy. The learning
approach is used to estimate the value function of an optimal control problem of interest.
The phasor extremum seeking controller implements the approximate optimal controller. The
approach is shown to provide reasonable approximations of optimal control problems without
the need for a parameterization of the nonlinear control system. A simulation example are
provided to demonstrate the effectiveness of the technique.
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1. INTRODUCTION

Recent developments in learning techniques have inspired
control theorists and researchers to integrate control
methodologies for the design of data-based control sys-
tems. One such technique is reinforcement learning (see
Sutton and Barto (1998), Watkins and Dayan (1992) and
references therein). In reinforcement learning, a control
system is made to adjust its actions according to a mean-
ingful user-defined optimal control problem. The learning
process is generally iterative and involves a certain param-
eterization of the unknown value function (i.e., a solution
of the Bellman equation) and, possibly, the optimal con-
troller (Barto et al. (1983), Bertsekas and Tsitsiklis (1995),
Busoniu et al. (2010) ,Mehta and Meyn (2009), Sutton
et al. (1992), Bradtke et al. (1994)) . The identification
of the parameters requires some probing of the system
dynamics using some external excitation signal. One com-
mon iterative learning approach is Q-learning Watkins
and Dayan (1992). In this technique, the value function
is estimated by iteratively computing a Q-function. This
Q-function can be viewed as a Bellman function that is
subject to an existing (sub-optimal) state-feedback con-
troller. At each step, the Q-function yields an estimate
of the value function that can be used to define a new
state-feedback controller. Convergence is achieved when
the Bellman error reaches a suitable tolerance level.

Model-free and model-based approaches have been pro-
posed. It is generally recognized that model-based strate-
gies (such as Vamvoudakis and Lewis (2010)), which re-
quires knowledge of the system’s dynamics, provide a more
effective learning strategy that results in a fewer number

of learning steps. Model-free techniques are increasingly
popular in the context of machine learning (such as Mehta
and Meyn (2009), Sutton et al. (1992), Bradtke et al.
(1994),Bhasin et al. (2013)). Their design is obviously
more challenging. For control affine systems, researchers
have proposed affine parameterizations of the unknown
dynamics in addition to the parameterization requirements
of Q-learning. Some techniques have cleverly integrated
the unknown dynamics into a single actor-critic approach.

In this study, we propose a novel on-policy model-free
reinforcement learning technique. The proposed technique
introduces two new element in the solution of Q-learning
problems. The first element is a set-based parameter es-
timation technique that is suitable for nonlinearly pa-
rameterized dynamical systems. The technique, originally
presented in Adetola et al. (2014), provides an effective
mechanism that avoids the actor-critic methodology for
Q-learning by providing a unique parameterization. The
second element is a phasor extremum-seeking control ap-
proach as initially proposed in Atta et al. (2015). In the
context of this learning approach, the phasor extremum
seeking approach allows one to deal with systems with un-
known dynamics. The combination of the two techniques
is shown to provide a learning approach that avoids the
dual parameterization of the actor-critic approaches and
the parameterization of the unknown nonlinear dynamics.
The total number of unknown parameters are therefore
reduced which improves the convergence properties of the
technique and minimizes the extent of external excitation
necessary for the estimation of the parameters.

The paper is organized as follows. A problem description
of the learning problem along with the key assumptions
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are given in Section 2. The application of the set-based
nonlinear estimation approach for Q-learning is present in
Section 3. The phasor estimation approach is presented
in Section 4. The complete integrated model-free mecha-
nism is presented in Section 5 along with the analysis of
stability. A simulation example is presented in Section 6
followed by brief conclusions and proposed future work in
Section 7.

2. PROBLEM DEFINITION

We consider control affine nonlinear systems described by:

ẋ = f(x) + g(x)u (1)

where x ∈ Rn is the vector of state variables, u ∈ Rp is the
vector of input variables, f : Rn → Rn is a vector valued
smooth function of the state variables and g : Rn → Rn×p
is a matrix valued function of the state variables.

It is assumed that the state variables are available for mea-
surement but that the dynamics of the system (described
by f(x) and g(x)) are unknown.

The objective is the compute the control law, u(t) =
α(x(t)), that minimizes the cost functional:

J(x0, u(t)) =

∫ ∞
0

Q(x(t)) + u(t)TRu(t)dt. (2)

The minimization of J(x0, u(t) subject to u(t) has a value
function given by:

V ∗(x) = inf
u(t)

∫ ∞
0

Q(x(t)) + u(t)TRu(t)dt. (3)

We define the Lie derivative of a function, V (x), along the
vector field f(x) and g(x) as:

LfV
∗ = (∇xV ∗)f(x), LgV

∗ = (∇xV ∗)g(x), (4)

respectively.

Assuming that V ∗(x) is finite valued and continuous
differentiable, it satisfies the nonlinear partial differential
equation (PDE):

min
u

(
LfV

∗ + LgV
∗u+Q(x) + uTRu

)
= 0. (5)

The solution of this PDE leads to the well-known optimal
state-feedback controller:

argminuH(x,∇xV ∗, u) = −1

2
R−1LgV

∗T . (6)

We consider term on the left hand side of (5) for some
arbitrary input u. This defines the function, often called
Q–function, as follows:

H∗(x, u) = LfV
∗ + LgV

∗u+Q(x) + uTRu. (7)

The problem considered here is to approximate the opti-
mal controller corresponding to the value function V ∗(x)
using only the measurement of the state variables. In-
spired by existing Q–learning and reinforcement learning
techniques, we propose an adaptive approach to the com-
putation of optimal controllers. The approach utilizes a
set-based hybrid learning recursive least squares technique
described in the next section.

3. SET-BASED LEAST-SQUARES Q–LEARNING

In this section, we propose an alternative estimation al-
gorithm that prevents the need for the standard iterative
or actor–critic Q–learning methodologies used to identify
the unknown value function and the corresponding optimal
state-feedback.

Let us recall a standard actor–critic Q–learning algorithm.
The strategy is to consider a functional approximation of
the value function of the form:

V (x) = WT
c φ(x) + ec(x) (8)

where Wc ∈ RN is a vector of unknown constants to be
estimated, φ : Rn → RN is a vector of smooth basis
functions and ec(x) is the truncation error. The basis
functions are such that limN→∞ ‖ec(x)‖ = 0.

Using this parameterization of the value function, the Q–
function can be approximated as follows:

Hc(Wc, φ, x, u) = WT
c

∂φ

∂x
(f(x) + g(x)u) +Q(x) + uTRu.

(9)

If the plant dynamics are known, one can let the optimal
controller be given by:

u = −1

2
R−1g(x)T

∂φ

∂x

T

Wa + ea(x)

where Wa ∈ RN is an unknown parameter. The addition
of the parameter Wa ensures that the Hamilton-Jacobi
Bellman constraint (9) is linear with respect to the un-
known parameter Wc. This is often referred to as an actor-
critic approach to reinforcement learning. The solution of
this problem requires the estimation of both Wa and Wc

subject to an equilibrium constraint Wa = Wc. The actor-
critic approach yields a very difficult adaptive parameter
estimation which requires complex and conservative per-
sistency of excitation conditions. As a result, the tuning
and dither signal design is extremely challenging. Further-
more, the corresponding estimation procedures yield local
stability properties.

The set-based estimation technique exploits the following
parameterization of the Q-function as follows:

Hc(Wa,Wc, φ, x, u) =(Wa +Wc)
T ∂φ

∂x
(f(x) + g(x)u)

+Q(x) + uTRu+ ec(x).

with nominal state-feedback:

u = −1

2
R−1g(x)T

∂φ

∂x

T

(Wa +Wc) + ea(x).

where ec(x) and ea(x) are assumed to be error terms
associated with the parameterization of the unknown
value function. It is assumed that the error terms are
locally Lipschitz on some set Ω ⊂ Rn containing the
origin. Throughout this paper, it is assumed that the
parameterization is such that ec(x) = 0 and ea(x) = 0.
That is, it assumed that the approximation errors are
negligible. This assumption can be relaxed but it requires a
more complicated analysis that will be addressed in future
work.

We first define the approximate error using the Bellman
equation:
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eH =H(x∗, u∗)

−
(

(Wa + Ŵc)
T (Lfφ+ Lgφû) +Q(x) + ûTRû

)
where x∗ and u∗ represents the optimal solution to the
optimal control problem where H(x∗, u∗) = 0. The ap-
proximate state-feedback is given by:

û = −1

2
R−1g(x)T

∂φ

∂x

T

(Wa + Ŵc).

Next we pose an estimation approach for Ŵc where it
is first assumed that the value of Wa is assumed to be
constant. The Bellman error is written as follows:

eH =H(x, u,Wa,Wc)−
(

(Wa + Ŵc)
TLfφ+Q(x)

− 1

4
(Wa + Ŵc)

TLgφR
−1Lgφ

T (Wa + Ŵc))

)
Expanding, we obtain:

eH = H(x, u,Wa,Wc)−
(

(Wa + Ŵc)
TLfφ+Q(x)

− 1

4
(Wa)TLgφR

−1Lgφ
T (Wa))

− 1

2
(Wa)TLgφR

−1Lgφ
T (Ŵc))

− 1

4
(Ŵc)

TLgφR
−1Lgφ

T (Ŵc))

)
The first term, can be expanded as:

H(x, u,Wa,Wc) =(Wa +Wc)
TLfφ+Q(x)

− 1

4
(Wa)TLgφR

−1Lgφ
T (Wa)

− 1

2
(Wa)TLgφR

−1Lgφ
T (Wc)

− 1

4
(Wc)

TLgφR
−1Lgφ

T (Wc).

We define the parameter estimation error W̃c = Wc − Ŵc.
The error term eH is written as:

eH =W̃T
c Lfφ−

1

2
(Wa)TLgφR

−1Lgφ
T (W̃c)

− 1

4
(Wc)

TLgφR
−1Lgφ

T (W̃c)

− 1

4
(W̃c)

TLgφR
−1Lgφ

T (Ŵc)

)
.

We define

φH = Lfφ−
1

2
LgφR

−1Lgφ
T (Wa)− 1

4
LgφR

−1Lgφ
T (Ŵc)

and

ηH = −1

4
(Wc)

TLgφR
−1Lgφ

T (W̃c).

We now rewrite eH as follows:

eH = φT W̃c + ηH .

We first make the following assumption.

Assumption 1. The true value of the parameter Wa +Wc

lies inside a ball of radius zc centred at Wa denoted by Θc.

In this study, we consider the application of a set-based
identification technique proposed in Adetola et al. (2014).
We first define a variable z such that:

ż = eH = W̃T
c φH + ηH

Next, we introduce the variables ẑ and c, governed by the
differential equations:

˙̂z = kW (z − ẑ) + cT
˙̂
Wc (10)

and

ċ = −kW c+ φH (11)

where kW is a positive constant to be assigned.

We define the error e = z − ẑ with dynamics governed by
the differential equations:

ė = W̃T
c φH + ηH − kW e− cT ˙̂

Wc.

Following Adetola et al. (2014), we define the auxiliary

variable η = e− cT W̃c. Their dynamics are given by:

η̇ = −kW + ηH .

We then consider the variable η̂ with dynamics:

˙̂η = −kW η̂ (12)

and let η̃ = η − η̂ such that:
˙̃η = −kW η̃ + ηH .

We then pose the following parameter update for Ŵc:

Σ̇ =ccT , (13)

˙̂
Wc =Proj

(
Σ−1c(e− η̂),Θc

)
(14)

with initial conditions Σ(0) = I, Ŵc = 0 where I is
the identity matrix and Proj(·,Θc) denotes the projection
algorithm.

We define the function P = ŴT
c Ŵ

T
c − z2

θ . It is defined as
follows:

Proj(τ,Ba) =


τ ifP < 0 or

P = 0 and∇Ŵc
Pτ ≤ 0(

I − ∇P
TP

PPT

)
τ otherwise

The algorithm has the following important properties:

(1) It is Lipschitz continuous on Θc.

(2) For Ŵc(0) +Wa ∈ Θc ⇒ Ŵc(t) +Wa ∈ Θc, ∀t ≥ 0.
(3) It fulfills the following inequality:

W̃T
c Proj(τ,Ba) ≥ W̃T

c τ (15)

for Wc ∈ Θc and Ŵc ∈ Θc.

We know pose the Lyapunov function candidate: VW̃c
=

W̃T
c ΣW̃c. The time derivative of V along the trajectories

of the parameter estimation update is given by:

V̇W̃c
=− 2W̃T

c Σ
˙̂
Wc + W̃T

c cc
T W̃c

≤− W̃T
c c(e− η̂) + W̃T

c cc
T W̃c.

We substitute for η = e− cT W̃c to obtain:

V̇W̃c
≤− 2(e− η̂ − η̃)T (e− η̂) + (e− η̂ − η̃)T (e− η̂ − η̃)

≤− (e− η̂)T (e− η̂)2 + η̃T η̃.

Next we consider the function Vη = η̃T η̃. Its derivative is
given by:

V̇η = −2kW η̃
T η̃ + 2η̃T ηH ≤ −kW η̃T η̃ + ηTHηH .

By assumption 1, it follows that ‖Wc‖ ≤ zc and ‖W̃c‖ ≤
2zc. As a result, we obtain the following inequality:
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V̇η ≤− kwη̃T η̃ +

(
‖Wc‖‖LgφLgφT ‖F‖W̃c‖

)2

≤− kwVη + 4z4
c‖LgφLgφT ‖2F .

where ‖LgφLgφT ‖F denotes the Frobenius of the matrix
LgφLgφ

T .

It follows that if the minimum eigenvalue of Σ is strictly
positive and the time varying regressor φH is bounded,
V is a suitable Lyapunov function for the parameter
update. This can be stated by the standard persistency
of excitation condition.

Assumption 2. The trajectories of the system are such
that there exist positive constants, α, β and T such that

αI ≤ 1

T

∫ t+T

t

c(τ,Wa)c(τ,Wa)T dτ ≤ βI

∀t ≥ T and ∀Wa ∈ Θc.

Next, we invoke a result from Adetola et al. (2014). It is
restated with some modifications to address the specific
learning task considered in this work.

Lemma 1. Assume that the signals of the system (1)
fulfill the persistency of excitation condition as stated in
Assumption 2. Then, the parameter estimation scheme
(10), (11), (12), (13) and (14) is such that the parameter
estimation error converges exponentially to a ball centred
at the origin with a radius of O(z2

θ0).

Next we consider a hybrid learning algorithm to identify
the constant parameter Wa. This can be done as follows.

We first initialize the uncertainty set with an initial centre
Wa[0] and radius zc[0]. The corresponding uncertainty set
Θc is assumed to contain the true unknown parameter
value Wa[0] + Wc. As the parameter Wc is updated via
(14), we assume that the proposed discrete update yields
a pair of sequences {Wa[k]} and {zc[k]} associated with a
sequence of times {tk} such that

Wa(t) = Wa[k], tk ≤ t < tk+1. (16)

We consider the function Vz as the solution of the differ-
ential equation:

V̇z = −(e− η̂)T (e− η̂) + Vη (17)

V̇η = −kwVη + zc[k]4‖LgφLgφT ‖2F (18)

with initial condition, Vz(0) = 4λmax [Σ(0)] (zc(0))2 and
Vη(0) = ‖η̃(0)‖2, respectively. We define the quantity:

zc(t) =

√
4Vz(t)

λmin[Σ(t)]
. (19)

The sequence of times tk are the times at which

zc(t) ≤ zc[k − 1]− ‖Ŵc(t)‖. (20)

At time tk, we update the uncertainty set to Wa[k] =

Wa[k − 1] + Ŵc(tk) with radius zc[k] = zc(tk). The

continuous-time parameter Ŵc(t) is reinitialized to 0. All
other quantities are kept at their current value.

This can be summarized by the following algorithm.

Algorithm 1. Beginning from time ti−1 = t0, the param-
eter and set adaptation is implemented iteratively as fol-
lows:

1 Initialize zc(ti−1) = zc[i − 1], Ŵc(ti−1) = 0,
Wa(ti−1) = Wa[i − 1], η̂(ti−1) = e(ti−1), c(ti−1) = 0
and Θc[i− 1] = B(Wa[i− 1], zc[i− 1])).

2 At time ti, using equations (14) and (19) perform
the update

(Wa[i], Θ[i]) =


(
Wa[i− 1] + Ŵc(ti), Θ(ti)

)
,

if zc(ti) ≤ zc[i− 1]− ‖Ŵc(ti)‖
(Wa[i− 1], Θ[i− 1]) ,

otherwise

(21)

3 Iterate back to step 2, incrementing i = i+ 1.

As outlined in Adetola et al. (2014), this procedure has
three important properties:

(1) Θc[k + 1] ⊂ Θc[k] ∀k.
(2) W ∗ ∈ Θc[0]⇒W ∗ ∈ Θ[k] ∀k.

One of the main properties of the proposed approach can
be stated as follows.

Theorem 1. Let the trajectories of the system be such
that Assumption 2 holds. Let the system be such that
Assumptions 1 hold then the set update (19), algorithm 1
and the parameter estimation routine ((10),(11),(12) and

(14)) guarantee that the parameter estimates θ̂ converge
asymptotically to the true values, θ.

4. PHASOR ESC

In the absence of precise knowledge of the dynamics, the
state feedback û = − 1

2R
−1Lgφ

T (Wa + W ∗c ) cannot be
implemented explicitly. In existing techniques (see Mehta
and Meyn (2009), Bhasin et al. (2013)), the unknown
nonlinear system dynamics must be approximated using
another affine parameterization.

These approximations can involve very high dimensional
neural networks that require considerable exploration and
limits the performance of the reinforcement learning al-
gorithms. In this study, we focus on the application of a
phasor extremum-seeking control approach to estimate the
unknown vector valued function:

G(x) =
∂φ

∂x
g(x) = [G1(x) · · · GN (x)]

T

We favour the phasor extremum seeking approach since
it can provide a direct estimate of G(x). The phasor
approximation of G(x) is developed as follows.

One of the characteristics of the phasor approximation
is that it requires high frequency signals. In fact, the
approximation of φ̇ needs to be interpreted using a time-
scale argument. We consider the time-scale transformation
dτ = ωdt and compute φ̇i for the ith element of φ in the τ
time-scale to obtain:

dφi
dτ

=
1

ω
(Lfφi + Lgφiû+ALgφi sin(τ).

If we let A = ρω for some positive constant ρ > 0, we
therefore obtain:

dφi
dτ

=
1

ω
(Lfφi + Lgφiû+ ρLgφi sin(τ)

Using the order notation O, we can write:
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dφi
dτ

= O
(

1

ω

)
+ ρLgφi sin(τ)

As a result, we can express φ̇i using a phasor approxima-
tion of the form:

φ̇i ≈ βi0 + αi1 sin(ωt) + βi1 cos(ωt).

which is exact up to a term of order O
(

1
ω

)
.

For each element of the vector G(x), we design a Kalman
filter to provide estimations of the time-varying terms βi0
αi1 and βi1. The phasor estimation dynamics are given by:

˙̂zi =β

L1(φ̇i − Cẑi) + v̂1i

L2(φ̇i − Cẑi) + v̂2i

L3(φ̇i − Cẑi) + v̂3i

 (22)

˙̂vi =βγ

L1(φ̇i − Cẑi)
L2(φ̇i − Cẑi)
L3(φ̇i − Cẑi)

 (23)

where ẑi = [ẑ1i, ẑ2i, ẑ3i]
T is the estimate of the vector

z = [β0i, αi1, βi2]T ,

v̂i = [v̂1i, v̂2i, v̂3i]
T

and
C = [1, sin(ωt), cos(ωt)]

for i = 1, . . . , N , γ and β are positive constants to be
assigned. The observer gain is given by:

L =

[
L1, L2, L3

]T
=

[
β`1, β`2 sin(ωt+ ξ), β`2 cos(ωt+ ξ)

]T
with ξ = 2 tan−1(φ), for some phase angle φ to be
specified.

5. ROBUST STABILIZATION WITH SET-BASED
LEAST SQUARES LEARNING

In this section, we consider the stability of the phasor
estimation with the set-based estimation. We first consider
the stability of the closed-loop system with state feedback
u = − 1

2 Ĝ
T (Wa + Ŵc).

We first make the following assumption concerning the
existence of a state-feedback.

Assumption 3. The basis function s φ(x) are chosen
such that there exists a W ∗ and a state-feedback u =
−kLgφTW ∗ with k > 0, a positive constant, and R,
a positive definite matrix, that globally asymptotically
stabilizes the origin of the closed-loop nonlinear system:

ẋ =f(x)− kg(x)R−1g(x)T
∂φ

∂x

T

W ∗.

Based on the assumption, one can consider the function
V (xa) = W ∗Tφ(x) as a candidate Lyapunov for the
system. This is clear since the parameter W ∗ meets the
optimality condition:

W ∗TLfφ− k(1− k)W ∗TLgφR
−1Lgφ

TW ∗ +Q(x) = 0.

Thus, for k = 1
2 , one obtains:

V̇ =W ∗TLfφ−
1

2
W ∗TLgφR

−1Lgφ
TW ∗

= −Q(x)− 1

4
W ∗TLgφR

−1Lgφ
TW ∗ ≤ −Q(x).

Thus, given W ∗, the phasor extremum seeking control,
the state-feedback, u = − 1

2 Ĝ
TW ∗, yields the following

averaged closed-loop:

ẋa = f(xa)− kg(xa)ĜTW ∗

d

dt

[
z̃i
v̂i

]
= β

[
−A(ξ) −I
γA(ξ) 0

] [
z̃i
v̂i

]
(24)

It then follows by the exponential stability of the phasor
estimation error dynamics and the optimality of the state-
feedback u = − 1

2Lgφ
T (Wa + W ∗c ) that the closed-loop

system (24) is robustly stable to the parameter estimation

error W̃c and the phasor estimation error G̃ = Lgφ− Ĝ.

To avoid the possibility of peaking due to the variations
of the estimate Ĝ, one needs to implement a saturated
version of estimate ofG = Lgφ to prevent any destabilizing
fluctuations. To make this more precise we identify a
level set of the function V = (Wa + W ∗c )Tφ, Ωβ =
{x ∈ Rn |V (x) ≤ β} and assume that there exists a finite
value Mg = supx∈Ωβ

‖Lgφ‖. As result, the saturation

of the estimate such that ‖Ĝ‖ ≤ Mg is used to define

the state-feedback, u = − 1
2

¯̂
GT (Wa + W ∗c ), where

¯̂
G is a

bounded value of the estimate. In this study, we consider
the expression:

¯̂
Gi = Mg tan−1

(
Ĝi
Mg

)
.

A Lyapunov stability analysis on the averaged process
dynamics can be conducted to confirm the asymptotic
stability of the averaged closed-loop system. As a result,
one can used a standard average analysis approach to
prove the practical asymptotically stability of the closed-
loop nonlinear system.

6. SIMULATION STUDY

6.1 Example 1

In this example, we consider the unknown nonlinear sys-
tem:

ẋ1 =− x1 + x2,

ẋ2 =− 0.5x1 − 0.5x2(1− (cos(2x1) + 2)2)

+ (cos(2x1) + 2)u

We consider the optimal control problem:

J(x0, u(t)) = min
u(t)

∫ ∞
0

x(t)TQTx(t) + u(t)TRu(t)dt

where Q =

[
1 0
0 1

]
, R = 1. The basis functions are chosen

as: φ(x) = [x2
2, x1x2, x

2
1].

The vector of derivatives φ̇ is estimated using a high-pass
filter with filter parameter ωh = 1000. We consider a dither
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frequency ω = 200 with amplitude A = 15. The phasor
estimator is tuned such that l1 = 1000 and l2 = 100
and ξ = π/6. The tuning constants of the parameter
estimation routine are given by γ1 = 1, γ2 = 0.2. The
initial conditions are x(0) = [10, 10]T , Ŵc(0) = Ŵa(0) =
[10.251]T , with all other variables starting at zero. No
external dither signal is required

u = −kŴT
a Ĝ(x) + d(t)

where d(t) = 5 sin(2t).

The value function for this optimal control problem is:

V ∗(x) = xT
[
0.5 0.0
0.0 1

]
x

which can be optimally represented over the functions in
the vector φ(x).

The simulation results are shown in Figure 1-2. Figure
1 shows the state variables (x1 , x2) and the input (u)
trajectories resulting from the learning algorithm. The
parameter estimates Ŵc (full lines) are shown in Figure 2
along with the actual valueWc (dashed line) corresponding
to the true value function V ∗(x). The proposed technique
approximates the value function of this nonlinear optimal
control problem effectively.
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Fig. 1. The state variables (x1 , x2) and input (u) trajec-
tories for Example 6.1.

7. CONCLUSION

This study presents a new Q-learning technique for the
approximation of output controller for a class of unknown
nonlinear systems. The approach incorporates two new
techniques for the approximation of the value function
of an infinite horizon optimal control problems. A set-
based estimation is proposed for the estimation of the
value function. A phasor estimation approach is used
to circumvent the lack of knowledge of the nonlinear
dynamics. The technique is shown to provide an effective
approximation of the value function and the optimal
controller that solves a user-defined nonlinear optimal
control problem.
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