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Abstract: The earlier the plant measurements are available for a given plant input, the quicker
iterative real-time optimization by modifier adaptation (MA) can steer the plant to its optimum.
In practical applications, in addition to the time required for a plant to reach its steady state
and to the time a sensor needs to perform the measurement, further delays can occur. For
example, due to the time required for the sample to reach the location of the sensor, caused by a
remote positioning of the measurement device. We propose a modifier adaptation strategy where
additional plant perturbations are performed around an estimate of the solution to the adapted
optimization problem during the waiting period which is caused by the measurement delay. The
strategy is tested on the benchmark Otto-Williams reactor case study and its performance is
studied.
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1. INTRODUCTION

Improving the economics of processes while fulfilling envi-
ronmental requirements is nowadays crucial for the process
industries worldwide. A central lever to survive the in-
creasing competition is the operation of processing plants
at their optima. Provided one has an exact mathematical
model of a plant at hand, the optimal operating point can
be found by solving an economic optimization problem
subject to the model equations and process constraints.
However, in practical applications a sufficiently accurate
mathematical model is often not available. Models can
have uncertainties in the model parameters as well as in
the structure of the model equations. This plant-model
mismatch can lead to a sub-optimal operation, since the
model optimum and plant optimum may not coincide.

Iterative steady state optimization in the past years has
evolved as an approach that can identify the plant opti-
mum in the presence of structural and parametric plant-
model mismatch. Chen and Joseph (1987) addressed para-
metric uncertainty in their two-step approach, where the
uncertain model parameters are iteratively updated us-
ing plant measurements. However, this method does not
handle structural plant-model mismatch. The integrated
system identification and parameter estimation (ISOPE)
approach proposed in Roberts (1979) handles the struc-
tural plant-model mismatch by using the plant gradients
w.r.t. the process inputs in addition to the plant measure-
ments to converge iteratively to the plant optimum. In
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ISOPE, the cost function of the optimization problem is
reformulated by adding a gradient correction term which
is iteratively updated. Redesigned ISOPE was proposed
in Tatjewski (2002) where no parameter estimation is
performed and only iteratively updated bias and gradient
correction terms are used. This scheme was further ex-
tended by Gao and Engell (2005) to handle process depen-
dent constraints. Later, Marchetti et al. (2009) analysed
this approach and proposed the name modifier adaptation
(MA). They provided a proof that indeed the solution at
convergence satisfies the Karush-Kuhn-Tucker necessary
conditions of optimality of the plant despite the fact that
its behaviour deviates from the model that is used in the
optimization.

In the iterative optimization methods mentioned above,
finite differences are employed to compute the plant gra-
dients w.r.t. the process inputs (Roberts, 2000; Gao and
Engell, 2005; Marchetti et al., 2010). The approaches based
on finite differences are vulnerable to measurement noise.
Recently Gao et al. (2016b) proposed modifier adaptation
with quadratic approximation (MAWQA) in which the
iterative gradient modification optimization (IGMO) from
Gao and Engell (2005) is combined with elements from
derivative free optimization (DFO) (Conn et al., 2009).
A quadratic approximation (QA) of the behaviour of the
plant is built using a selection of the available observed
responses and is then used to compute the plant gradients.
In the presence of measurement noise this approach out-
performs conventional methods based on finite differences.

Stationary optimization using modifier adaptation is built
on the assumption that after each change of the manip-
ulated variables the new steady state can be observed
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Fig. 1. Illustration of a general plant with a sensor attached
in a remote location.

and the next inputs are computed from this information.
This may however lead to a slow convergence. Therefore
using transient information has been investigated by Gao
et al. (2017); Ferreira et al. (2017); Rodŕıguez-Blanco et al.
(2017); Cadavid et al. (2017). Besides the delays caused by
the slow convergence of the plant to a new steady state,
measurement delays can further slow down the iterative
optimization. e.g. due to the remote positioning of mea-
surement devices (Gottu Mukkula et al., 2018). In Fig. 1
this situation is illustrated. The measurement device is
located at a significant distance from the plant, which
is quite common in the process industries. For example,
due to safety regulations, measurement devices like NMRs
have to be placed in ATEX certified enclosures located
at a distance from the process equipment. The thin, long
tubing which carry the sample from the plant to the
sensor cause a significant waiting period. In this paper,
we propose a strategy based on MAWQA that actively
performs additional plant perturbations during the waiting
period to gain additional plant information instead of
remaining idle until the effect of a new operating point has
propagated through the plant-measurement device setup.
Here we extend the strategy proposed in Gottu Mukkula
et al. (2018) by performing additional plant perturbations
around an estimate of the future plant inputs.

The paper is organized as follows. First, the formulation of
MAWQA is briefly presented. Then an active perturbation
strategy is presented to effectively use the waiting period.
Finally, the proposed scheme is implemented on the Otto-
Williams reactor case study (Williams and Otto, 1960) and
its performance is compared with standard MAWQA.

2. MODIFIER ADAPTATION WITH QUADRATIC
APPROXIMATION

Given a steady state mathematical model of a plant (1b)
with an nu-dimensional vector of process input variables,
an ny-dimensional vector of measured variables and a cost
function Jm : Rnu × Rny → R, the model optimum u∗m is
identified by solving the following optimization problem

u∗m = arg min
u∈[uL,uU ]

Jm(ŷ,u) (1a)

s.t. ŷ = Fm(u), (1b)

Gm(ŷ,u) ≤ 0, (1c)

where Fm : Rnu → Rny represents the input to output
mapping function, which is assumed to be at least twice
differentiable w.r.t. the vector of process inputs u. The
variables ŷ and Gm represent the vector of model outputs
and the process constraints. The upper and lower bounds
of the process inputs are denoted by vectors uL,uU .

The model optimum u∗m in (1) may differ from the true
plant optimum u∗p due to plant-model mismatch. There-
fore, in order to converge to the true plant optimum,
the cost function Jm and the process constraints Gm in
the model-based optimization problem (1) are iteratively
updated to steer u∗m towards u∗p. In the MA approach, the
following modified optimization problem is considered:

Jad,k
m = Jm + (Jk

p − Jk
m) +

(∇Jk
p −∇Jk

m)T (u− uk),

(2a)

Gad,k
m = Gm + (Gk

p −Gk
m) +

(∇Gk
p −∇Gk

m)T (u− uk),

(2b)

where (Jk
p −Jk

m) and (Gk
p−Gk

m) are bias correction terms

evaluated at the process input for the kth iteration uk.
The gradient modifier terms (∇Jk

p − ∇Jk
m) and (∇Gk

p −
∇Gk

m) are the differences between the plant and the
model gradients of the cost function and of the process
constraints w.r.t. the process inputs u evaluated at uk.
For the kth iteration, the modified optimization problem
is given by

ûk+1 = arg min
u∈[uL,uU ]

Jad,k
m (3a)

s.t. ŷ = Fm(u), (3b)

Gad,k
m ≤ 0. (3c)

In MAWQA, the process input ûk+1 obtained from the
optimization problem (3) is restricted to lie inside a
confidence ellipsoid the properties of which are defined
by the points used for the QA, which will be discussed
later in this section. The plant gradients ∇Jk

p and ∇Gk
p

which are required to solve the optimization problem in (3)
are estimated using a quadratic approximation of the cost
function and of the constraints (Gao et al., 2016b).

The measurements of the cost function and of the con-
straint functions are locally approximated by fitting the
parameters of a quadratic function Q to the available
past measurements. A general quadratic function can be
expressed as

Q(P,u) =

nu∑
i=1

i∑
j=1

ai,juiuj +

nu∑
i=1

biui + c. (4)

To fit the parameters of Q, a set of well distributed data
points Uk around the input point uk is required. The set
Uk is identified by screening all available data points Uk.
In general, Uk should consist of at least (nu + 1)(nu +
2)/2− 1 well distributed distant data points Uk

dist and all
neighboring points Uk

nb which lie in the vicinity of uk. The
condition number of the matrix Sk, which is formed from
the differences of the past distant inputs Uk

dist to the last
input uk, is used to assess the quality of the distribution of
data points in set Uk

dist (Brdyś and Tatjewski, 1994; Gao
and Engell, 2005). If the inverse of the condition number
of Sk is not larger than a lower bound, additional plant
perturbations are performed to improve the distribution of
the points in Uk. Gao et al. (2016b); Wenzel et al. (2017)
have proposed two different selection algorithms to screen
Uk to identify Uk. A comparative study of the screening
algorithms was reported in Wenzel et al. (2017). Upon
identifying Q, the gradients that are needed to calculate
the modifier terms can be approximated by the gradients
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Fig. 2. Illustration of the standard modifier adaptation methods and the proposed active perturbation method.

of Q. Since, there is no guarantee that the fit based on
the measurements is perfect, Gao et al. (2016b) proposed
an additional constraint for the modified optimization
problem (3), which enforces the optimizer to stay within
a confidence ellipsoid around the current operating point:

(u− uk)T cov(Uk)(u− uk) ≤ γ2, (5)

where γ is a scaling parameter.

3. ACTIVE PERTURBATION STRATEGY

In this section, we propose a strategy to efficiently use the
waiting period and thereby reduce the time to converge
to the plant optimum. For the topology of the plant-
measurement device configuration in Fig. 1, we assume
that the time required to transport the steady state sample
from the plant outlet, τd, is significantly longer than the
time to reach the steady state τp and the maximal time to
measure the sample τs. An example is a tubular reactor in
which a reaction with fast kinetics takes place. The green
symbols in Fig. 2 illustrate the usual MA approaches which
remain idle during the waiting period until the steady-
state measurements are available. At time t the (k + 1)th

modifier adaptation iteration input is applied to the plant.
According to the assumptions, at time t + τp the steady
state sample leaves the plant. Further assuming a plug
flow behavior of the sample through the tube, it takes
additional τd time units until the sample has reached the
sensor at time t + τp + τd. The sample is then analyzed
and the measurements are available after a total time
of t + τt, with iteration time τt := τp + τd + τs. Note
that the plant remains at the steady state from t + τp
to t + τt and during this waiting period no effort is made
to acquire additional plant information. We propose to use
this time more effectively by performing additional plant
perturbations.

The proposed active perturbation strategy is illustrated
in Fig. 2 from time t + τt on. The key idea is to perturb
the plant during the waiting period. Assume that a new
input is given to the plant at time t+ τt. The steady state
sample leaves the plant at t+τt +τp, after which the plant
waiting period starts. During this period, from t+ τt + τp
to t + 2τt additional perturbations can be made to gain
useful information about the plant, the measurements of
the responses to these inputs then arrive from t + 2τt to
t+ 3τt − τs. If an increase of the iteration time should be
avoided, the maximum number of perturbations is limited
to Pmax, where Pmax is given by

Pmax :=

⌊
min

{τd + τs
τp

,
τd + τp
τs

}⌋
. (6)

In Gottu Mukkula et al. (2018), we proposed an active
perturbation strategy where additional perturbations are
made around the current input uk. In the following subsec-
tion, we propose a scheme to estimate the future input and
to perturb the plant around this value during the waiting
period. The scheme is illustrated using a case with two
inputs and with Pmax = 4. We assume the points in the
regression set to be well distributed for simplicity of the
exposition.

3.1 Active perturbation around the estimated future input

The strategy is illustrated in Fig. 3. The plant is perturbed
around an estimated future input point ûk+1

e , marked by
“∗”. As the measurement and thus the plant gradient at
the current input point uk are not yet available, the next
input uk+1 cannot be calculated precisely. To estimate the
future input we make the following assumption.

Assumption 1. If the current input uk is close to the
previous input uk−1, the difference between the plant and
the model gradients at the current input is approximately
equal to the gradient difference at the previous input point,
i.e., (∇Jk

p − ∇Jk
m) ≈ (∇Jk−1

p − ∇Jk−1
m ) and (∇Gk

p −
∇Gk

m) ≈ (∇Gk−1
p −∇Gk−1

m ).

The same assumption is made for the bias correction
terms (Jp − Jm), (Gp −Gm). With these assumptions the
future input is estimated by solving the following modified
optimization problem

ûk+1
e = arg min

u∈[uL,uU ]
Jad,k
m,e (7a)

s.t. ŷ = Fm(u), (7b)

Gad,k−1
m,e ≤ 0, (7c)

where

Jad,k
m,e = Jm + (Jk−1

p − Jk−1
m )+

(∇Jk−1
p −∇Jk−1

m )T (u− uk),

(8a)

Gad,k
m,e = Gm + (Gk−1

p −Gk−1
m )+

(∇Gk−1
p −∇Gk−1

m )T (u− uk−1).

(8b)

The optimization problem in (7) for the (k+1)th iteration
is similar to the optimization problem in (3) for the kth

iteration, except that the confidence ellipsoid in (5) for
(k + 1)th iteration is centered around the input point
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Fig. 3. Illustration of the active perturbation strategy with perturbation around the estimated future input point ûk+1
e .

resulting from the optimization problem (3) for the kth

iteration.

In Fig. 3, “ ” represent the inputs to the plant for each
iteration. For the kth iteration, the input uk is applied
to the plant. Once the plant reaches the steady state, it
can be perturbed by new inputs represented by “ ”. The
perturbation points should be chosen such that they are
well distributed around ûk+1

e . To avoid frequent revisiting
of almost the same input point, perturbing around already
existing data points is suppressed (Gottu Mukkula et al.,
2018). In Fig. 3, all the four circles represent the planned

perturbations around ûk+1
e . In Fig. 3a, an ideal scenario for

active perturbations is illustrated, i.e., when uk+1 ≈ ûk+1
e .

In the ideal scenario, all the additional perturbations made
will be selected by the screening algorithm for QA (Gao
et al., 2016b). If the assumption upon the plant gradients

does not hold, i.e., when uk+1 6= ûk+1
e , as shown in Fig. 3b,

the estimate may deviate from the next input point.
However, even if the estimated future input ûk+1

e is at
a distance from the next input point uk+1, the performed
perturbations are useful as explorative moves (Gao et al.,
2016a). In this case, among the additional perturbations
made not all of them may be selected by the screening
algorithm for QA. For example, in Fig. 3b, only the points
marked by “⊕” are selected by the screening algorithm.

The modifier adaptation approach in Gao et al. (2016b)
considers the iteration inputs that do not improve the
plant objective as unsuccessful iterations. To estimate the
future input ûk+1

e by solving the optimization problem in
(7), the input uk is required, which depends on whether
or not the earlier iteration was successful (Gao et al.,
2016b). It does not make sense to wait until the plant
measurements for input uk are obtained to determine
whether the iteration was successful or not since reaching
the plant optimum fast is a priority. Therefore, we propose
the following steps to implement the proposed scheme:

(1) Probe the plant with the iteration input uk.
(2) Assume that uk is a successful iteration input and

solve (7) for ûk+1
e .

(3) Identify the additional perturbation points around

ûk+1
e and probe.

(4) For the remaining part of the waiting period (if
any), operate the plant at the last known successful
iteration input.

(5) Upon availability of plant measurements for uk, eval-
uate if the iteration is successful.

(6) Solve the MA problem for (k + 1)th iteration.

Additionally, in order to avoid frequent probing of the
plant with unsuccessful inputs and thus deteriorating the
plant performance, we propose the following rule: A set
containing the list of unsuccessful moves is maintained.
An iteration input is applied to the plant iff the number of
points in the set that are close (≤ φ̄max) to the iteration
input uk is less than a predefined number (≤ φcount).
φcount, φ̄max are defined depending on the expected level
of measurement noise and the sensitivity of the plant profit
function w.r.t. the inputs.

4. CASE STUDY

4.1 The Otto-Williams reactor

The benchmark Otto-Williams reactor (Williams and
Otto, 1960) case study is used to investigate the per-
formance of the proposed scheme. Both parametric and
structural plant-model mismatch are considered. The plant
(simulated reality) consists of a CSTR in which the reac-
tants A and B react to produce products E and P in a
three step reaction scheme. The model only accounts for
two reactions, which leads to a structural mismatch.

Plant: Model:

A + B
k1−→ C, A + 2B

k̃1−→ P + E,

C + B
k2−→ P + E, C + B + P

k̃2−→ G + E.

P + C
k3−→ G.

The reaction schemes of the plant and the model are listed
above. The manipulated variables are the flow rate of
reactant B (FB) and the reactor temperature (TR) with
bounds [3, 6] kg/s and [70, 100]◦C. The objective is to
maximize J , defined as

J(y,u) = 1143.38XpF+25.92XEF−76.23FA−114.34FB ,

where F := FA + FB and XP and XE are the measured
variables of the process at steady state. For the purpose
of illustration, we assume that the values of τp, τd and
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Fig. 4. Evolution of the input variables FB (Input 1) and TR (Input 2). Standard MAWQA scheme in the top figure and
the proposed active perturbation scheme in the bottom. The values of the plant objective are indicated by circles
at the times when the measurement information is available.

τs are 3, 12 and 3 minutes, i.e., τt = 18. The remaining
parameters can be found e. g. in Marchetti et al. (2010).

4.2 Settings of the parameters of the algorithm

Standard MAWQA and MAWQA with the active pertur-
bation approach are applied with the following settings:

• The inputs are scaled to [0, 1]
• The screening algorithm from Gao et al. (2016b) is

used
• Uk

nb = {u : ||u− uk||2 ≤ 0.1;u ∈ Uk}
• Perturbation factor for finite differences = 0.1
• Lower bound on the inverse of the condition number

of Sk = 0.1.

The following additional settings are used in the proposed
scheme:

(1) φcount = 3, φ̄max = 0.005

(2) Perturbation points around ûk+1
e = ûk+1

e +
{0.11[Inu×nu ,−Inu×nu ], 0.055[Inu×nu ,−Inu×nu ]}

(3) Suppress additional plant perturbation if the mini-
mum distance between Uk and the input choice for
perturbing the system is less than the threshold 0.05,

where I is the identity matrix. Step (4) and the rule
proposed in section 3.1 are active for both schemes.

4.3 Simulation results

The evolution of the input variables over time for 15
iterations of both schemes without measurement noise
are illustrated in Fig. 4. Both schemes are initialized
at time t = 0 at the scaled input [FB , TR] = [0, 1].
(“∗,∗”) represent the true plant optimum. The input of a
successful iteration is marked by “ , ” and of
an unsuccessful iteration the inputs are marked by (“ ,

”). In the 0th and 1st iteration of both schemes, i. e.,
for t = [0, 24] and t = [24, 51], two and three plant
perturbations (“ , ”) are made to estimate the plant
gradients. From the 2nd iteration on wards, i. e., from
t = 51, QA is used for the gradient estimation. Step
(4) in section 3.1 can be observed, e. g. at points 1 , 2
for standard MAWQA. The input obtained by solving

the MA problem is given to the plant as a perturbation,
after which the plant is driven to its previous successful
iteration. If there are additional perturbations needed due
to the constraint on the condition number of Udist, they
are made after the input perturbation. For the proposed
scheme (bottom figure in Fig. 4), it can be seen that a
maximum of five (Pmax) additional perturbations (“ ,

”) are made around the estimated future input in each
iteration. In the interval from t = [69, 90], the proposed
scheme makes six additional perturbations of which one is
made to satisfy the constraint on the condition number.
The additional perturbations that are made around the
future estimate help to reach the plant optimum earlier.
Upon convergence, all additional plant perturbations and
input moves which do not improve the plant profit are
suppressed due to the setting (3) in section 4.2 and the
rule proposed in section 3.1.

The values of the plant objective for each input for
standard MAWQA and the proposed schemes are also
shown in Fig. 4. The plant profit for all inputs, computed
by the MA iterations and by the perturbations are marked
by“◦”and displayed at the point in time when they become
available, i. e., with a delay of τt minutes.

The performance of the schemes are compared based on
the cumulative cost, i.e., the summation of the plant profit
over the plant run time, and by their ability to steer the
plant to an acceptable region O = {u : ||u − u∗p||2 ≤ ε}
and to remain within it. The standard MAWQA and the
proposed schemes were initialized at 49 different initial
points (scenarios) identified at the intersection points of a
7 × 7 uniform grid of the operating region. The average
cumulative profits per scenario for 50 iterations without
noise for the standard MAWQA and the proposed scheme
is 1.7432 × 105 and 1.7648 × 105. For the case with a
measurement noise of 0.5 standard deviations the results
are 1.5486 × 105 and 1.5519 × 105. The average profit of
the proposed scheme has a higher value for the objective
function for both noisy and noise free measurements. This
shows that the performance loss due to the perturbations is
recovered by reaching the plant optimum earlier. Figures
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Fig. 6. Histogram plot comparing the time for the proposed
and the standard MAWQA schemes to reach and stay
inside the acceptable region O for measurements with
noise

5 and 6 show histograms comparing the time at which
the plant is driven into the acceptable region (O) for
ε = {0.025, 0.05, 0.075} for both standard MAWQA and
the proposed scheme with and without measurement noise.
In both cases the proposed scheme drives the plant to the
acceptable region faster due to the additional information
gained by perturbing the plant.

5. CONCLUSION

An active perturbation strategy where additional plant
perturbations are made around an estimated future input
point is proposed to efficiently use the waiting period
which occurs due to measurement delays. A method to
estimate the future input of MAWQA is presented. The
proposed scheme was simulated for the Otto-Williams
reactor case study. It was shown that the proposed scheme
has a better performance than the standard MAWQA
scheme without perturbations.
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