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Abstract: This paper addresses the fault detectability problem for PCA-based process
monitoring methods under closed-loop control. Unlike previous research assuming the same
process variation for both modeling and monitoring periods, the impact of controller on
data variation is considered. The effective fault direction is given in order to describe the
effect of process variation on fault detection index under different controllers. The minimum
variance along the effective fault direction is developed by introducing the concept of block-
lower-triangular interactor matrix and conditional minimum variance control. The sufficient
condition for a fault to be detectable under any controllers is provided. The proposed method
is demonstrated with the simulation examples.
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1. INTRODUCTION

Statistical process monitoring has been studied by many
researchers and successfully applied in the process in-
dustries. Measurements from different sensors are col-
lected and incorporated into a data-driven model, which
is typically based on principal component analysis (PCA)
(Kresta et al., 1991) or partial least squares (PLS) (Mac-
Gregor et al., 1994; Qin and Zheng, 2013). Some statistics
are subsequently derived to monitor the process operation
faults and sensor faults.

While fault detection and diagnosis has been researched
intensively, analysis on fault detectability based on PCA is
insufficient. Early work by Dunia and Qin (1998c) provides
the sufficient condition for unidimensional-fault detectabil-
ity with Squared Prediction Error (SPE) statistic. A more
rigorous derivation is presented in (Dunia and Qin, 1998a),
which is further extended to the multidimensional-fault
case in Dunia and Qin (1998b) and Mnassri et al. (2013)
where the necessary condition for SPE is also derived. To
improve fault detectability with PCA, Wachs and Lewin
(1999) have developed an improved PCA method that
recursively sums the scores and increases correlations be-
tween the input-output data by time shifting. However,
these research work assumes the faulty data contain a
constant bias in steady state, which is parameterized as
the product of fault direction ξ and magnitude f , while
the distribution or variation of process data are identical
during modeling and monitoring periods, which are shown
as blue and red ellipses in Fig. 1.

Industrial process systems are usually operated under
the regulation of feedback controllers. During the design
phase, a controller is synthesized by balancing different
objectives and factors, e.g., setpoint tracking, disturbance
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rejection, and economics. Improving fault detectability un-
der abnormal condition is rarely taken into account, since
the process is designed around a predetermined operating
point. To address this problem, recently Du et al. (2016)
propose an optimal tuning method seeking for a trade-off
between fault detection and control performance by solv-
ing an optimization problem, where the fault detectability
is expressed by a likelihood function. In the case of PCA-
based monitoring method, maximizing likelihood is equiva-
lent to reduce the process variation along the effective fault
direction (Dykstra and Sun, 2017). However, in practice
when a portion of faulty samples are detected by process
monitoring systems, the user tends to tune the controller
such that fault detectability weighs more in the control
objective. Such action can be detrimental – closed-loop
control performance is sacrificed while faults may never
be fully detected given a confidence limit. As illustrated in
Fig. 1, fault detection rate is improved by implementing
a controller that generates process data represented by
the magenta ellipse, but this ellipse may never collapse
into a line where all faulty samples can be distinguished.
Therefore, it calls for a benchmark for fault detectability
with the “best” feedback controller. Users can be informed
of the minimum fault magnitude that is detectable for a
specific fault direction.

This paper addresses the fault detectability problem with
PCA-based approaches under any feedback controllers.
Since fault detection rate can be improved by variance
reduction along the effective fault direction, the minimum
variance of process data along this direction will be ex-
plored. While decreasing variation of manipulated vari-
ables (MV) can be easily achieved, it is generally unachiev-
able to suppress variation in controlled variables (CV) to
zero due to the presence of time delay. It is shown in the
pioneering work by Harris (1989) that the minimum vari-
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Fig. 1. Motivation. Blue ellipse: variation of normal process
data; red ellipse: variation of faulty data with the
same controller; magenta ellipse: variation of faulty
data with a different controller.

ance of CV of single-input-single-output (SISO) systems
can be estimated from routine operation data. For multi-
input-multi-output (MIMO) systems, unitary interactors
are adopted to derive the minimum variance of CV in
terms of sum of each CV variance (Huang et al., 1997).
When the variance of a CV subspace needs minimization,
a block-triangular interactor matrix should be applied to
describe the delay structure (Sun et al., 2011), which will
be used in the current work. Based on this conditional
minimum variance value, the fault detectability radius will
be obtained to aid users to evaluate if it is feasible to detect
a fault by re-tuning controllers.

The remaining part of this paper is organized as follows.
Section 2 briefly reviews PCA-based process monitoring
techniques and the sufficient condition for fault detectabil-
ity. In Section 3, the conditional minimum variance is
derived first followed by the development of fault de-
tectability radius. Some simulation results are presented
in Section 4. Finally conclusions are given in Section 5.

2. FAULT DETECTABILITY FOR PCA-BASED
PROCESS MONITORING

2.1 PCA-Based Statistical Process Monitoring

The process monitoring method discussed in this paper
relies on a PCA model which decomposes normal process
data into two parts:

X = TPT + X̃ (1)

where the data matrix X = [x1,x2, · · · ,xN ]T ∈ RN×m

consists of N data samples with each row representing
a sample xT

i ∈ Rm, which is scaled to zero mean and
usually unit variance. P ∈ Rm×l is an orthonormal matrix
called loading matrix, where l is the number of principle
components (PC) retained. T = XP ∈ RN×l is the score

matrix. X̃ is the residual matrix.

The principal component subspace (PCS) is represented
by Sp = span{P} and the residual subspace (RS) is
Sr = span{P}⊥. Therefore, a sample vector x ∈ Rm can
be projected onto PCS and RS by

x̂ = Cx (2)

x̃ = (I−C)x (3)

where C = PPT is the projection matrix onto PCS. x̂ and
x̃ are the modeled and residual portion of x. A geometric
interpretation of PCA decomposition of x is shown in Fig.
2.

(a) (b)

Fig. 2. A sample vector projected onto PCS and RS with
(a) SPE detection cylinder, and (b) T 2 detection
cylinder.

There are many existing work researching the statistics
for detecting faults with PCA model. The most popular
ones are SPE or Q-statistic, and Hotelling’s T 2. Assuming
process data observe Gaussian distribution, the control
limits for either index can be derived.

The SPE statistics evaluate the distance between PCS and
sample vector x, which is its projection onto RS.

SPE ≡ ‖x̃‖2 = ‖(I−C)x‖2 (4)

When correlation among process variables is broken, SPE
index increases. Thus, the process is considered abnormal
if

SPE > δ2

where the control limits for SPE is denoted by δ2. The
original expression for δ2 is developed by Box et al.
(1954). Other approximations are intensively studied, e.g.,
(Dunia et al., 1996). The geometric interpretation of fault
detection with SPE is illustrated in Fig. 2. The process is
considered to be normal when sample vector is inside the
cylinder whose axis is PCS and radius is δ. A sample lies
outside the cylinder can be detected by SPE index and
will be labeled as faulty data.

The Hotelling’s T 2 index mainly detects faults in PCS.
One example is normal change of the steady-state operat-
ing point. T 2 is defined as

T 2 = xTPΛ−1PTx (5)

where matrix Λ is a diagonal matrix with diagonal ele-
ments being the first l eigenvalues of Σ = 1

N−1XTX in

descending order. Since T 2 statistic can be approximated
by a χ2-distribution with l-degrees of freedom when N is
large, the control limits τ2 becomes τ2 = χ2

l . Similarly, a
fault in PCS is detected when

T 2 > τ2

2.2 Fault Model

In this paper, a unidimensional fault is assumed whose
exact source may be unknown. However, the fault can be
reflected on process data by the following expression:

x = x∗ + fξ (6)

where x is an abnormal sample vector, ξ ∈ Rm is a known
fault direction vector, and f represents the fault magni-
tude. Variation in process data is denoted by x∗, which can
be different during PCA modeling and monitoring periods.

In order to make fair comparison, it is assumed in this
paper that the controller does not affect fault magnitude
f . This can be generally achieved by setting the steady
state of process at E{x} or constraining the steady-state
gain of controllers.
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Remark. In other literatures, x∗ is defined as normal pro-
cess variation. In this work, however, since it is possible to
change the controller, the process variation under abnor-
mal condition may be different from that of normal data.

Table 1. Summary of control limits

SPE T 2

Control limit Γ δ2 τ2

2.3 Fault Detectability under Closed-Loop Control

Regardless of fault detection subspace, the fault index in
quadratic form can always be represented by

γ = xTMx (7)

where γ is the index. The semi-positive-definite matrix
M equals I −C for SPE and PΛ−1PT for the T 2 index.
Multiplying M

1
2 on both sides of (6) gives

M
1
2 x = M

1
2 x∗ + M

1
2 fξ (8)

By denoting the control limit as Γ (see Table 1), the fault
is sufficiently detectable when

‖M 1
2 x‖ > ‖M 1

2 fξ‖ − ‖M 1
2 x∗‖ > Γ (9)

Since the fault is not detectable despite the value of f
when M

1
2 ξ = 0, it is assumed M

1
2 ξ > 0 thereafter. Thus,

one can define the effective fault direction as

ξo ≡ M
1
2 ξ

‖M 1
2 ξ‖

(10)

From (9), to make the fault sufficiently detectable, the

equivalent fault magnitude fo = ‖M 1
2 ξ‖f has to satisfy

fo = ‖M 1
2 fξ‖ > ‖M 1

2 x∗‖+ Γ (11)

> ‖M 1
2 x∗‖min + Γ (12)

where ‖M 1
2 x∗‖min is the minimum value of ‖M 1

2 x∗‖.
Geometrically, the effective fault direction ξo is parallel
to the radial direction of the cylinder in Fig. 2, while
fo represents the distance between the fault vector and
longitudinal axis of the cylinder. A fault is considered to
be detectable if fo is at least the sum of the control limit
Γ and the minimum process variation along the radial axis
‖M 1

2 x∗‖min.

More specifically, for SPE index shown in Fig. 2(a), ξo

is parallel to x̃; a detectable fault should be a least
‖M 1

2 x∗‖min away from the cylindrical surface. Similarly,
for T 2 index illustrated in Fig. 2(b), ξo aligns with x̂
with the same distance between a detectable fault and the
control limit surface.

The value of ‖M 1
2 x∗‖min can be determined by the follow-

ing cases.

Case 1. All nonzero elements of ξo correspond to the con-
trolled variables (CV) of the process. Since digital sam-

pling normally introduces a unit time delay, ‖M 1
2 x∗‖min

is generally greater than zero. Its value is computed by the
method shown in the next section.

Case 2. All nonzero elements of ξo correspond to the
manipulated variables (MV) of the process. In this case,
reducing the degree-of-freedom of the controller can force
‖M 1

2 x∗‖min = 0

Case 3. Not all nonzero elements of ξo correspond to
either the MV or the CV. The projected process variance
x∗TMx∗ becomes a combination of MV and CV variance,
whose minimum value may not be obtained unless the
model of true process is known. This case will not be
discussed in the current work.

3. CONDITIONAL MINIMUM VARIANCE

In this section, the conditional minimum variance control
is discussed. The corresponding minimum variance of CV
in a subspace will be derived, which is used to obtain CV
fault detectability.

3.1 Block-Lower-Triangular-Interactor Matrix

The time delay of a SISO system can be characterized by
q−d where q−1 is the backshift operator and d denotes
the delay. However, the time-delay structure of a MIMO
system usually takes a more complicated form called
interactor. Assume a MIMO process can be modeled as

yk = G(q)uk +N(q)ak (13)

where y, u, and a represents process output, input, and
Gaussian noise vectors with corresponding sizes, respec-
tively. Transfer function matrices G(q) and N(q) are the
process and disturbance models.

Definition 1. (Sun et al. (2011)). Given a proper and ra-
tional transfer-function matrix G(q) with size n× n, D(q)
is known as block-lower-triangular interactor matrix if

G(q) = D(q)−1G̃(q)

lim
q−1→0

G̃(q) = lim
q−1→0

D(q)G(q) = K

and

D(q) =


D11(q) 0 · · · 0
D21(q) D22(q) · · · 0

...
...

. . .
...

Dm,1(q) Dm,2(q) · · · Dm,m(q)

 (14)

where K is a full rank finite and non-zero matrix, and Di,i

(i = 1, . . . ,m) are the unitary interactor matrices.

In the context of this article, it is sufficient that m = 2
since there are only two types of CVs – the CVs relevant
and CVs irrelevant to the fault subspace.

3.2 Derivation of Conditional Minimum Variance

To obtain ‖M 1
2 x∗‖min, the coordinate needs to be rotated

such that the first CV of the process in the new coordinate
aligns with ξo. One of the solutions is to perform QR
decomposition ξo = QR which provides the rotation
matrix QT . Thus, by left multiplying QT on both sides
of (13) the new system becomes

y′k = G′(q)uk +N ′(q)ak (15)

where y′k = QTyk, G′(q) = QTG(q), and N ′(q) =
QTN(q).

Next, the rotated CV vector y′k is divided into two groups:

y′k =

[
y′1,k
y′2,k

]
(16)

where y′1,k is the first CV of rotated system which is
aligned with ξo while the rest of CVs are included in
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y′2,k. According to (14), the corresponding block-lower-
triangular interactor can be expressed by

D =

(
D11 0
D21 D22

)
.

Hence, the rotated process (15) is rewritten as

y′k = D−1G̃′u′k +N ′a′k (17)

where the delay-free transfer function matrix G̃′ = DG′

satisfies that limq−1→0 G̃′ is nonzero, finite, and full rank.
Note that the time delay d of the MIMO process is defined
as the order of matrix D.

By introducing the filtered output ỹ′k = q−dDy′k, further
simplification of (17) leads to

ỹ′t+d = G̃′uk +DN ′ak. (18)

Since N ′(q) is a rational model of the delay-free distur-
bance, DN ′ can be factorized as

DN ′ = Fdq
d + Fd−1q

d−1 + · · ·+ F1q︸ ︷︷ ︸
F (q)

+R(q).

Therefore, Equation (18) becomes

ỹ′k+d = G̃′uk + Fak +Rak. (19)

Due to causality, it is impossible to eliminate Fak. There-
fore, the conditional minimum variance control law can be
subsequently derived:

uk = −G̃′−1
Rak (20)

since G̃′ is invertible. We have the following lemma for
conditional minimum variance control law under block-
lower-triangular interactor.

Lemma 2. The conditional minimum variance control law
(20) minimizes

(1) the variance of first rotated CV; and
(2) the sum of variances of the rest CV when 1) is

achieved.

Proof. See Sun et al. (2011).

Based on (20), the conditional minimum variance is ob-
tained.

minE{y′21,k} = tr(eT1 FΣaF
T e1) (21)

where e1 = [1, 0, . . . , 0]T and Σa represents the noise
covariance.

3.3 Fault Detectability with Conditional Minimum Variance

Since the plant and disturbance model of process is linear
and noise source is Gaussian, projection of process varia-
tion M

1
2 x∗ is also multivariate Gaussian. Therefore, given

a confidence interval, ‖M 1
2 x∗‖min can be determined from

Student’s t-distribution with mean being fξ and variance
calculated by (21).

Note that the derivation of conditional minimum variance
(21) does not require true process model. Only the delay-
structure, i.e., the lower-block-triangular interactor ma-
trix, along with disturbance dynamics N(q) needs to be
known.
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Fig. 3. CV fault in Example 4.1. Blue dots are normal
data; red crosses are faulty samples. Abnormal data
in the upper and bottom figure are regulated by
the original controller and the minimum variance
controller, respectively. Control limit is represented
by the dashed line.

4. SIMULATION EXAMPLES

A motivating simulation example is presented first to
provide an intuition to the method, which is followed by a
more realistic case of MIMO systems.

4.1 A Motivating Example

Let a SISO process be

yk = G(q)uk +N(q)ak + b (22)

where G(q) = q−1, N(q) = 1 + 0.8q−1 + q−3, the noise
source term ak ∼ N(0, 1) and b is the bias term. Under
normal condition, the setpoint is chosen as [ry, ru] = [0, 0]
with zero bias b = 0. The controller is designed to be

uk = − q−2

1 + 0.8q−1
(ry − yk) (23)

Substituting (23) into (22) suggests

yk = ak + 0.8ak−1 (24)

and
uk = −ak−2 (25)

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

693



Stacking yk and uk gives the sample vector for fault
detection:

xk = [uk, yk]T = [−ak−2, ak + 0.8ak−1]T (26)

It is obvious that the components of xk are independent.
Thus, performing PCA on X results in the first PC being
the MV u and the second PC being the CV y as shown
in Fig. 3. Setting the number of PC l = 1, the SPE and
T 2 indices simply become y2 and u2, respectively, with the
95% control limits δ2 = 6.56 and τ2 = 4. A total of 1000
samples are collected to build the PCA model.

Faults in CV Suppose there exists a fault on y that shifts
the steady-state value of y from 0 to 4.56, which is reflected
in the model that ry = b = 4.56. Simple calculation
suggests that ξ = ξo = [0, 1]T , and f = fo = 4.56.
If the controller still takes the form of (23), the fault is
not fully detectable. In fact, f needs to be at least 2δ =
5.12 to ensure detectability. However, since the process is
SISO with unit time-delay, the minimum variance of yk is
σ2

MVC = 1 which suggests that f > δ + 2σMVC = 4.56
can be detected. The corresponding minimum variance
controller is

uk = (0.8 + q−2)(ry − yk) (27)

Some visual clues are provided in Fig. 3. A total of 300
faulty samples are generated. Simulation results show that
the fault detection rates for faulty samples under same
controller and minimum variance controller are 94.3% and
97.7%, respectively.

Faults in MV Assume a fault occurs on the MV such
that the steady-state value of MV has a bias of 2.05
while the process bias term is b = −2.05. Hence the
setpoint becomes [ry, ru] = [0,−2.05]. If the controller
(23) remains unchanged, nearly half of the faulty data
cannot be distinguished (Fig. 4). However, when operated
open-loop (or equivalently, the controller gain is zero), all
abnormal samples are correctly identified as shown in Fig.
4.

4.2 A MIMO Process Example

The Wood-Berry distillation column model is simulated.
With 1 minute sampling time, the process model is dis-
cretized as

G(q) =

q−2 0.7665

1− 0.9419q−1
q−4 −0.9000

1− 0.9535q−1

q−8 0.6055

1− 0.9123q−3
q−4 −1.3472

1− 0.9329q−1

 .
with the following disturbance model being selected:

N(q) =


1

1− 0.8q−1

1− 0.5q−1

1− q−1

 (28)

whose associated ak ∼ N(0, I2).

An unconstrained model predictive controller (MPC) is
designed to control the process under normal condi-
tion. The prediction and control horizons are set to 100
and 10, respectively. The MPC has the output weight
Wy = diag{100, 1} and input-move weight W∆u =
diag{0.01, 0.01}. The setpoint of MPC is selected as ry =
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Fig. 4. MV fault in Example 4.1. Blue dots are normal
data; red crosses are faulty samples. Abnormal data
in the upper and bottom figure are regulated by the
original controller and the zero-gain controller, respec-
tively. Control limit is represented by the dashed line.

[95%, 5%]. Since (28) is nonstationary, the sample vector
is composed of CV data only. There are 1000 samples
collected for PCA modeling with l = 1. The loading matrix
is found to be

P = [0.707,−0.707]T (29)

Suppose there exists a fault in CV adding a bias term
∆ry = [3.3%, 3.3%] to the setpoint, i.e., ξ = [0.707, 0.707].
Since the fault lies in the RS, SPE index is applied during
the monitoring period, and hence ξo = ξ. The 95% control
limit is calculated to be δ2 = 4.13.

In the meanwhile, Eq. (29) suggests that the system needs
to be rotated 45◦ so that the first rotated CV aligns with
fo. The block-lower-triangular interactor can be obtained

D =

[
q2 0
q4 q4

]
(30)

with which the conditional minimum variance along ξo

in the RS space is σMVC = 1.72. Thus, the fault is
closed-loop detectable if fo > δ + 2σMVC = 4.655.
The lower bound is achieved by conditional minimum
variance controller which can be approximated by setting
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Fig. 5. Simulation results in Example 4.2. Blue dots
represents normal data; red crosses are faulty samples.
Abnormal data in the upper and bottom figure are
regulated by the original and the modified MPC,
respectively.

MPC weights Wy = [1, 0.99; 0.99, 1] and W∆u = 0 with
no constraints. Simulated results are demonstrated in
Fig. 5. It can be seen that with the modified controller
variance along fault direction is reduced at the expense of
variance along the orthogonal direction. Fault detectability
is therefore improved.

5. CONCLUSIONS

In this paper, fault detectability of process with arbi-
trary controller is discussed. It is shown that minimum
magnitude for a fault to be sufficiently detectable is the
sum of control limit and conditional minimum variance
in the equivalent fault direction. The tool of block-lower-
triangular interactor is introduced to aid the derivation of
minimum variance. The results are supported by simula-
tion results.

The results of this paper can be used to enhance fault
detectability for processes under closed-loop. For instance,
when a fault is detected with only a portion of samples in
a time window, one can determine if the fault is detectable
under closed-loop conditions and then alter the controller

to reduce uncertainty in the fault direction to enhance
fault detectability.
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