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Abstract: Useful simulation of complex systems for real-time or otherwise computationally
constrained applications often requires the creation of simplified system models from existing
analytical models and data. In this work, the creation of candidate models through machine
learning and heuristic-informed model simplification methods are explored, and the resulting
candidate models are evaluated and compared through an optimal experiment design process.
The dynamic system of interest is a counterflow air-to-water heat exchanger.
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1. INTRODUCTION

Modeling of complex physical systems for real-time or
otherwise computationally constrained applications often
demands the approximation of system behavior with sim-
plified models. Numerous methods exist for deriving ap-
proximate representations of nonlinear systems, including
projection- and truncation-based model reduction (Moore,
1981; Chatterjee, 2000), heuristic simplification (Nilsson
et al., 2006), surrogate modeling (Cozad et al., 2014),
and statistical machine learning (Ghahramani and Roweis,
1999). Each approach for the creation of approximate mod-
els carries its own advantages and disadvantages. Heuristic
and surrogate approaches require a relatively thorough
understanding of the principal dynamics and behavior of
the system of interest in order to ensure that key physics
are properly represented in the resulting approximations.
Approaches based on statistical modeling and machine
learning can be effective for identification of systems with-
out significant prior knowledge, but tend to be relatively
computationally intensive and present challenges in algo-
rithm selection and training data requirements.

Selection of a proper approximate model for a particular
system and application requires a means for evaluating the
performance of candidate models within the state space of
interest. Such evaluation is typically performed through
experiment by comparing the outputs of the candidate
model to those of the true system or a more detailed
original model for the same input conditions. These ex-
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periments are generally performed for arbitrary sets of
nominal conditions, conditions at the outer limits of the
input space, or for sets of randomly generated inputs.
These experiments can be improved by the determination
of input conditions that will readily identify the weak-
nesses of the candidate model. In this work, an optimal
experimental design method is applied in order to select
input conditions which maximize the error between the
candidate and original models.

The methods applied in this work are generally applicable
to nonlinear dynamic system models of the form (1),
composed of differential and algebraic equations:

M


F
(
Ẋ(t),X(t),U(t), Θ̂, t

)
= 0,

F0

(
Ẋ0,X0,U0, Θ̂, t0

)
= 0,

Y(t) = H
(
X(t)

)
,

(1)

wherein the full system model M consists of a set of equa-
tions F defining the state variables X, with time invariant
parameters Θ̂ and time varying inputs U. The additional
equations F0 and inputs U0 define the initial conditions.
The system output measurements Y are functions of the
state variables. Simulation of the original model is subject
to constraints on the parameters, inputs, and measure-
ments as follows:

Θ̂i,min ≤ Θ̂i ≤ Θ̂i,max i = 1, . . . , NΘ (2)

Umin ≤ U(t) ≤ Umax ∀t ∈ [0, τ ], (3)

Ymin ≤ Y(t) ≤ Ymax ∀t ∈ [0, τ ]. (4)

Model structures compatible with the form of (1) are fre-
quently encountered in thermofluid systems applications.
In this work, the particular system of interest is based on a
model of a counter-flow air-to-water heat exchanger with
vapor condensation, from the LBNL Modelica Buildings
Library (Wetter, 2010; Baillie and Bollas, 2017a). The
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Fig. 1. Heat exchanger model, as seen in Dymola

principal temperature dynamics of the heat exchanger are
defined by the following partial differential equations:

F =



∂Ta

∂t
=

ṁaCpa
∂Ta

∂z − haA (Ta − Tw)

VaρaCpa

∂Tb

∂t
=

ṁbCpb
∂Tb

∂z + hbA (Tw − Tb)

VbρbCpb

∂Tw

∂t
=

haA (Ta − Tw)− hbA (Tw − Tb)

MwCw

(5)

where Ta, Tb, and Tw are the air, water, and wall tem-
peratures; ha and hb are the heat transfer coefficients for
air and water sides; ṁa and ṁb are the mass flow rates
of air and water; Cpa, Cpb, and Cw are the specific heat
capacities of air, water, and the wall; Va and Vb are the
volumes of the air and water flow paths,; ρa and ρb are
the densities of air and water; A is the interface area of
the wall; and Mw is the mass of the wall.

The partial differential equations (5) are axially discretized
into ordinary differential equations in the original model.
The heat transfer coefficients for both the water and
air sides (ha and hb) are algebraically determined from
the inlet temperatures and flow rates. The default air
and water models of the Modelica Buildings Library are
used to determine the fluid properties, and the remaining
parameters are user-defined. The full discretized model
consists of 1127 total equations.

The inlet temperatures (Tain and Tbin), air mass flow rate
(ṁa), and inlet air relative humidity (φ) are selected as
the dynamic inputs to the system, while the outputs of
interest are the outlet temperatures (Taout and Tbout), air
outlet moisture fraction X, rate of energy accumulation
Eacc, and the log mean temperature difference (LMTD).

2. METHODS

Two methods for the creation of computationally simple
system models are presented here. The first is heuristic-
directed elimination of components from an original
model. The second is a constrained machine learning
method which guarantees convergence when applied to
stable systems.

2.1 Heuristic-directed Elimination

The objective of the elimination approach is to remove ex-
traneous terms, variables, and equations from an original
model (1) in order to produce a model of lower dimension-
ality or complexity in the form of

m


f
(
ẋ(t), x(t),U(t), θ̂, t

)
= 0,

f0
(
ẋ0, x0,U0, θ̂, t0

)
= 0,

ŷ(t) = h
(
x(t)

)
,

(6)

wherein the simplified model takes the same inputs and
retains the same output structure as the full model, with
reduced sets of state variables, parameters, and equations.
The simplified model is subject to constraints similar to
those of the original:

θ̂i,min ≤ θ̂i ≤ θ̂i,max i = 1, . . . , Nθ (7)

Umin ≤ U(t) ≤ Umax ∀t ∈ [0, τ ], (8)

ymin ≤ y(t) ≤ ymax ∀t ∈ [0, τ ]. (9)

A suitable simplified model should satisfy the condition:

‖Y − y‖ < ε ∀t ∈ [0, τ ],U ∈ [Umin,Umax] (10)

wherein the outputs produced by the reduced model match
those produced by the full model within some acceptable
error bound ε.

The heuristic algorithm applied herein is similar in princi-
ple to selective node elimination and other symbolic reduc-
tion methods developed for application to electronic cir-
cuits, as summarized in Haffmann and Wichmann (2003).
The effectiveness of this approach and the quality of
the resulting simplified model are highly dependent on
the method applied for ranking and selecting the terms
and components of the original model to be eliminated.
This approach builds on the exhaustive term elimination
method described previously (Baillie and Bollas, 2017b),
with the inclusion of a timed output sensitivity based rank-
ing method for the selection of components to eliminate.
Variables, parameters, or equations which define key phys-
ical or empirical features of the system can be identified
as ineliminable by the user. The original Modelica model
is translated into a symbolic form using the JModelica
platform (Åkesson et al., 2010) in order to allow the use
of the CasADi (Andersson et al., In Press, 2018) tool
to generate expressions for output sensitivities for each
eliminable variable. The original model is augmented with
these sensitivity expressions and simulated for a set of
nominal experiments. Relative values of the output sen-
sitivities are used to rank variables for elimination. Addi-
tional ranking heuristics based on component complexity,
variable/output correlation, and variable incidence classi-
fication can also be applied to rank model components.

2.2 Contracting Dynamical System Primitive

Numerous dynamical systems have important properties,
such as convergence to equilibrium points (stability), that
need to be retained by the models used to approximate
them. While classical statistical approaches attempt to
minimize modeling errors, they do not exploit this impor-
tant piece of information in the learning process (Cohn
et al., 1996; Quinonero-Candela et al., 2007). Algorithms
using Lyapunov analysis to ensure the stability of non-
linear dynamical systems represented by GMMs are pre-
sented in (Khansari-Zadeh and Billard, 2011, 2014; Um-
lauft et al., 2017). In our earlier works (Ravichandar and
Dani, 2015; Ravichandar et al., 2017), we developed an
algorithm called contracting dynamical system primitive
(CDSP) to learn the dynamics of stable nonlinear sys-
tems from data using statistical models. However, the
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Fig. 2. Block diagram representation of the CDSP algo-
rithm for learning stable nonlinear dynamical sys-
tems.

methods introduced in (Khansari-Zadeh and Billard, 2011,
2014; Umlauft et al., 2017; Ravichandar and Dani, 2015;
Ravichandar et al., 2017), consider class of nonlinear dy-
namical systems without time-varying external inputs. In-
deed, many physical systems, including thermofluid sys-
tems like the counter-flow heat exchanger, are modeled as
a nonlinear dynamical system with external control inputs
that exhibit multiple equilibria for different control inputs.

In this effort, we extend the CDSP method presented in
(Ravichandar et al., 2017) to learn the dynamics of stable
nonlinear systems with time-varying inputs and multiple
equilibria. The state trajectories are modeled using an
autonomous dynamical system of the form (1). The model
function F(·) is approximated using a Gaussian mixture
model (GMM) and the problem of learning nonlinear
dynamics is formulated as a parameter learning problem
with constraints derived from partial contraction analysis
of nonlinear systems (Wang and Slotine, 2005; Dani et al.,
2015). The constraints developed using partial contraction
analysis guarantee that the trajectories generated by the
learned model accurately reproduce the available data,
and converge to the appropriate steady-state from any
initial condition. Since the steady-state value might not
be readily known or cannot be identified analytically, a
separate GMM is trained to predict the steady-state value
given the initial conditions and the steady-state inputs.
A block diagram, describing the overall workflow of the
CDSP algorithm, is shown in Fig. 2.

A training dataset is produced from the original system,
consisting of a range of output and input trajectories which
converge to steady-state values. The steady-state value of
the system states X (T ) is assumed to be based on the
initial state X (0) and the steady-state control input U (T ).
If the steady-state values do not converge to zero, they are
translated to zero by creating new variables and writing
the original dynamics in the new variables.

Estimating Steady-State Values using GMMs It is as-
sumed that there exists a function that estimates the
steady-state value XSS ∈ Rn given the initial output state
X (0) and the steady-state control input U (T ) as follows

XSS = FSS (X (0) ,U(T )) (11)

where FSS : Rn×Rm → Rn is a continuously differentiable
function. A statistical model, represented using a GMM, is
used to approximate FSS (·) and estimate the steady-state
values

X̂SS =

KSS∑
k=1

hk
SS (USS)

(
Ak

SSUSS + bkSS

)
(12)

where USS =
[
X(0)

T
, U(T )

T
]T

is the augmented input

vector to the GMM, and hk
SS (USS) =

P(k)P(USS |k)∑KSS

i=1
P(i)P(USS |i)

is the scalar weight associated with the kth Gaussian,

such that 0 ≤ hk
SS (USS) ≤ 1 and

∑KSS

k=1 hk
SS (USS) =

1, P (k) = πk
SS is the prior probability, Ak

SS (x) =

Σk
X̂SSUSS

(
Σk

USS

)−1
, bkUSS

= µk
X̂SS

− Ak
SSµ

k
USS

, µk
SS =[(

µk
USS

)T
,
(
µk

X̂SS

)T ]T
andΣk

SS =

[
Σk

ySS
Σk

USSX̂SS

Σk
X̂SSUSS

Σk
X̂SS

]
are the mean and the covariance of the kth Gaussian, re-
spectively. The parameters of the GMM in (12) are learned
by solving a maximum likelihood problem using the expec-
tation maximization (E-M) algorithm as in Dempster et al.
(1977).

Learning Partially Contracting Dynamics using GMMs
For designing the learning algorithm, the system is first
written in terms of new variables such that the steady-
state values of the state and the control input shift to zero,
this reformulation is termed F̄ (·), with adjusted states
X̄(t) and adjusted inputs Ū(t). The nonlinear function
F̄ (·) is modeled using a separate GMM, and the resulting
autonomous dynamical system is given by

˙̄X (t) =

K∑
k=1

hk (z (t))
(
Akz (t) + bk

)
(13)

where z (t) = [X̄ (t)
T
, Ū (t)

T
]T , hk (z) = P(k)P(z|k)∑K

i=1
P(i)P(z|i)

is the scalar weight associated with the kth Gaussian, such

that 0 ≤ hk (z) ≤ 1 and
∑K

k=1 h
k (z) = 1, P (k) = πk is

the prior probability,Ak = Σk
˙̄Xz

(
Σk

z

)−1
, bk = µk

˙̄X
−Akµk

z,

µk = [µk
z, µ

k
˙̄X
]T and Σk =

(
Σk

z Σk

z ˙̄X

Σk
˙̄Xz

Σk
˙̄X

)
are the mean

and the covariance of the kth Gaussian, respectively. The
constrained optimization problem to be solved in order to
train the GMM model in (13) can be written as

θ̂,M̂ = argmin
θ,M

1

2T

N∑
n=1

Tn∑
t=0

‖ ˆ̄̇Xn (t)− ˙̄Xn (t) ‖2 (14)

s.t.
(
Ak

X̄

)T
M +MAk

X̄ + γM � 0, k = 1, ...,K, (15)

bk = 0, k = 1, ...,K, (16)

M � 0 (17)

Σk � 0, k = 1, ...,K, (18)

0 ≤ πk ≤ 1, k = 1, ...,K, (19)∑
k

πk = 1, (20)

where θ = {µ1...µK ,Σ1...ΣK , π1...πK} is a vector con-

taining the parameters of the GMM model, T =
∑N

n=1 Tn

is the total number of data points in the training data and
ˆ̄̇
Xn (t) =

∑K
k=1 h

k (z (t))
(
Akz (t) + bk

)
is the predicted

state derivative computed based on (13). The constraints
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(15)-(17) ensure the global attraction to the steady-state
0n×1 and the constraints in (18)-(20) are a result of using
a GMM to model the dynamics. Proof of the convergence
to steady state can be found in (Ravichandar et al., 2018).

The CDSP and other statistical frameworks do not require
modeling every state variable of a particular system in
order to sufficiently learn the behavior of the outputs of
interest. In this case, the GMMmodels trained for the heat
exchanger model only consider the outputs themselves,
resulting in a significantly reduced number of states.

2.3 Model discrimination and selection

Optimal experimental design methods are intended to
maximize the information that can be extracted from an
experiment or series of experiments by minimizing the
variance of estimators according to a design criterion. In
the case of discriminating between two or more models
of similar structure, the T-design criterion can be used
to find the optimal conditions for differentiating between
models while considering the entire state space (Atkinson
and Fedorov, 1975a,b). Similar optimal design approaches
have been applied to determine optimal experiments for
selection between competing candidate chemical kinetics
models (Han et al., 2016a,b; Atkinson et al., 1998) and
to design test procedures to identify fault conditions in
thermofluid systems (Palmer et al., 2016).

The T-design criterion used in this work is as defined in
(21), subject to the same simulation constraints as the
models of 1 and 6 .

ΦT = max
U(t)∈R

min
θ∈R

∫ τ

0

(
Ŷ
(
t
)
− ŷ
(
t
))ᵀ

Wy

(
Ŷ
(
t
)
− ŷ
(
t
))

dt

(21)
Subject to:

F
(
Ẋ(t),X(t),U(t), Θ̂, t

)
= 0, (22)

F0

(
Ẋ0,X0,U0, Θ̂, t0

)
= 0, (23)

Ŷ(t) = H
(
X(t)

)
, (24)

f
(
ẋ(t), x(t),U(t), θ̂, t

)
= 0, (25)

f0
(
ẋ0, x0,U0, θ̂, t0

)
= 0, (26)

ŷ(t) = h
(
x(t)

)
, (27)

θ̂i,min ≤ θ̂i ≤ θ̂i,max i = 1, . . . , Nθ (28)

Umin ≤ U(t) ≤ Umax ∀t ∈ [0, τ ]. (29)

In this formulation, arg ΦT is the design vector of the
experiment, consisting of the set of input trajectories U(t)
and adjusted parameters for the candidate reduced model
θ determined by the optimization. The experiment dura-
tion τ , sampling rate, and original model parameters Θ
are specified by the user. An optimal design vector is one
which satisfies the objective of (21) by maximizing (w.r.t.
input trajectories) the minimum (w.r.t. candidate model
parameters) of the integral sum of squares of the weighted
or relative error in the outputs of the candidate model
ŷ as compared to those of the original Ŷ . Minimizing the
error with regard to the parameters of the candidate model
allows for the adjustment of a subset the reduced model
parameters to compensate for the missing information
between the two models. Maximizing the error with regard
to the input trajectories seeks to identify and evaluate

the worst-case performance of the candidate model in
representing the behavior of the original model within the
specified input space. For this work, this method has been
implemented in Matlab/Simulink to allow for analogous
comparison of candidate models produced by either the
heuristic elimination or CDSP algorithms. Solution behav-
ior of the design problem for the T-optimal experiment is
highly dependent on the size and complexity of the system,
as well as the number of inputs, adjustable parameters,
and outputs considered. Solution uniqueness depends on
the convexity properties of (21) and is targeted by use of
multi-start algorithms.

Table 1. Input conditions for each experiment

Heuristic, Nominal

Input Low Bd Up Bd Initial Final

Tain , (
◦C) � � 40 35

Tbin , (
◦C) � � 20 30

ṁa, (kg/s) � � 0.3 0.4
φin � � 0.3 0.5

Heuristic, Optimal, Low Humidity

Input Low Bd Up Bd Initial Final

Tain , (
◦C) 5 50 5 50

Tbin , (
◦C) 5 40 40 5

ṁa, (kg/s) 0.1 0.55 0.1 0.55
φin 0.01 0.3 0.01 0.3

Heuristic, Optimal, Full Range

Input Low Bd Up Bd Initial Final

Tain , (
◦C) 5 50 50 50

Tbin , (
◦C) 5 40 5 5

ṁa, (kg/s) 0.1 0.55 0.1 0.1
φin 0.01 0.6 0.6 0.6

CDSP GMM, Nominal

Input Low Bd Up Bd Initial Final

Tain , (
◦C) � � 40 35

Tbin , (
◦C) � � 20 30

ṁa, (kg/s) � � 0.3 0.4
φin � � 0.3 0.5

CDSP GMM, Optimal, Constrained Inputs

Input Low Bd Up Bd Initial Final

Tain , (
◦C) 10 25 10.5 10

Tbin , (
◦C) 10 25 10 25

ṁa, (kg/s) 0.2 0.4 0.2 0.2
φin 0.2 0.4 0.265 0.2

CDSP GMM, Optimal, Full Range

Input Low Bd Up Bd Initial Final

Tain , (
◦C) 5 50 5 5

Tbin , (
◦C) 5 40 5 40

ṁa, (kg/s) 0.1 0.55 0.1 0.244
φin 0.01 0.6 0.01 0.01

3. RESULTS

The first candidate reduced model evaluated was one pro-
duced by the heuristic elimination algorithm. Sensitivity
analysis of the original model indicated that several of
its states and equations have very low output sensitivities
near the nominal operating conditions of the model. Most
of these model functions were related to the mixed media,
condensation, and latent heat related behavior of the wet
air stream. A candidate reduced model was created with
986 equations to the original model’s 1127. With the mix-
ing and condensation terms removed, this simplified model
effectively simulates a dry-coil heat exchanger.
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Fig. 3. Temperature results for heuristic elimination and
CDSP GMM candidate models.

The second candidate model considered was produced
by the CDSP algorithm and consisted of two GMMs,
one trained to predict the steady state values of the
model outputs for constant inputs, and one trained to
approximate the nonlinear dynamics of the model by
predicting the state derivatives given the current state
and input values. Using the trained GMMs and first order
Euler integration, state trajectories for the model can be
produced.

Table 1 presents the input values used in the nominal and
optimal experiments to test the accuracy of each model,
as well as the bounds imposed on the input space for the
optimization. The nominal input values were used as seed
values for the optimization. The optimal trajectories de-
termined, albeit local, were effective in identifying regions
of the input space in which the models are significantly
less accurate than at nominal conditions.

Figure 3 presents outlet air and water temperature tra-
jectories for nominal and optimal experiments with each
candidate model. The input trajectories for each exper-
iment consist of initial and final values for each of the
four inputs. Differences in the initialization behavior of
the candidate models required different experiment designs
for each case. In the heuristic elimination case, both the
original and reduced models were initialized to a fixed
set of states and allowed to settle to steady state before

input changes were applied, starting at 200s into the ex-
periment duration. For the CDSP case, both models were
initialized directly to steady state and the input changes
were applied at 10s into the experiment duration. The
full range of permissible inputs for the optimal experi-
ments were specified such that the lower bounds satisfy

Umin = [5◦C, 5◦C, 0.1kg/s, 0.01]
T
and the upper bound

Umax = [40◦C, 50◦C, 0.55kg/s, 0.6]
T
.

The heuristic elimination candidate model was extremely
accurate in reproducing the output trajectories of the
original model for the nominal case and for all cases where
the air inlet relative humidity was less than 0.3. At higher
humidity conditions where the effect of condensation be-
comes significant, the simplified model was inaccurate. The
simplified model consistently demonstrated an improve-
ment in CPU time for simulation of approximately 10%
over the original full model.

The GMM model evaluated here was trained within a
constrained input range, wherein the lower bounds were

Umin,GMM = [10◦C, 10◦C, 0.2kg/s, 0.2]
T
and the upper

bound was Umax,GMM = [25◦C, 25◦C, 0.4kg/s, 0.4]
T
.

The GMM model was extremely accurate in predicting
the initial and final steady state values of the system
outputs, but less effective in predicting their dynamic
trajectories. At high sampling rates, simulation of the
GMM model was significantly slower than the original
model. Its performance was substantially improved with
lower sampling rate and more efficient pre-processing, as
shown in Table 2.

Table 2 shows performance characteristics for each of the
simulation models. The simulation time reported is the av-
erage of ten simulations of the nominal experiment for each
model in Matlab. For the original and heuristic elimination
models, the sampling rate is 100hz, for the CDSP-GMM
model, the sampling rate is 1hz. The simulation time for
the CDSP-GMM model scales closely with the sampling
rate. The CDSP-GMM model at a 100hz rate simulates
in 12.68s without a significant difference in accuracy. The
mean absolute percent error reported is the relative er-
ror in absolute temperatures over the nominal and full
range optimal experiments. All simulations were carried
out in Matlab R2016b on a Windows 7 workstation with a
Xeon E3-1241 CPU and 32GB of memory. Mean absolute
percentage error is reported for the outlet temperatures
for each model at both nominal and optimal experiment
conditions.

Table 2. Candidate Model Characteristics

Model States Sim. time MAPE(nom) MAPE(opt)

Original 1127 2.13s 0 0
Heuristic 986 1.94s < 0.01% 4.38%
CDSP 5 0.156s 0.14% 1.04%

Simulation times reported correspond to 100hz sampling rate for the
Original and Heuristic models and 1hz for the CDSP model.

4. CONCLUSIONS

Two approaches were studied for the production of com-
putationally efficient thermofluid system models: (a) a
heuristic-directed term elimination approach, reducing a
high-fidelity model of the system; and (b) a contracting
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dynamical system primitive method, based on machine
learning. Both methods demonstrated different advantages
in fitting the original, high fidelity model of a heat ex-
changer. The heuristic elimination model generated was
extremely accurate within a relatively large subset of the
input space, and demonstrated minor improvements in
computation time. The CDSP GMM statistical model
consistently converged to the correct steady state values
for the system outputs, but was less effective at matching
system dynamics. The GMM model was also capable of
simulating at a much lower sampling rate than the original
model, with a significant reduction in required CPU time.
Efficiency improvements and refinements of the Heuris-
tic Elimination and CDSP algorithms are the focus of
ongoing work, along with application of these methods
to more complex systems and the exploration of hybrid
model structures that may share the advantages of each
approach.
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