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Abstract: Data-driven robust optimization has attracted immense attentions. In this work,
we propose a data-driven uncertainty set for robust optimization under high-dimensional
uncertainty. We propose to first decompose the high-dimensional data space into the principal
subspace and the residual subspace by employing principal component analysis, and then
adopt support vector clustering and classic polyhedral uncertainty set to describe the intricate
geometry in the principal subspace and the tiny variations in the residual subspace, respectively,
giving rise to a new data-driven uncertainty set. Similar to classic uncertainty sets, the proposed
data-driven uncertainty set can also preserve the tractability of robust optimization problems.
In addition, we establish the probabilistic guarantee theoretically by further calibrating the
uncertainty set with an independent dataset, which ensures that the data-driven uncertainty
set covers a portion of uncertainty with a given confidence level. Numerical results show the
effectiveness of the proposed uncertainty set in reducing conservatism of robust optimization
problems as well as the fidelity of the established probabilistic guarantee.

Keywords: Data-based decision-making, robust optimization, support vector clustering,
principal component analysis, dimension reduction.

1. INTRODUCTION

Robust optimization (RO) has been a basic tool for
decision-making under uncertainty (Ben-Tal et al. (2009);
Gabrel et al. (2014)). In process systems engineering, RO
has found extensive applications spanning across process
network design (Gong et al. (2016); Gong and You (2017)),
supply chain management (Tong et al. (2014); Yue and
You (2016)), and process scheduling (Lappas and Gounaris
(2016); Shi and You (2016)).

A key ingredient of RO is the uncertainty set that is used to
describe the possible realization of uncertain parameters.
Classic uncertainty sets that are widely adopted include
the box set, the ellipsoidal set, the polyhedral uncertainty
set, etc. The geometry and size of the uncertainty sets ex-
ert paramount influence on the quality of solutions to RO
problems. On one hand, the uncertainty set shall cover all
possible realizations of uncertainties to provide adequate
safeguards. On the other hand, unnecessary coverage shall
be removed to avoid over-conservative solutions. There-
fore, a common criticism on generic uncertainty sets is that
all of them have fixed geometric shapes, thereby lacking
sufficient flexibility to describe the high probability region
of the underlying distribution P.

In practice, we commonly have no idea about the under-
lying distribution P of uncertainty. The proliferation of
data nowadays provides more room to extract meaningful
information about P, which is in line with the spirit of big
data analytics (Qin (2014)). Based on such a motivation,

more and more research attentions have been paid to data-
driven robust optimization recently. The key idea is to
extract support information from data to develop a high-
quality uncertainty set. Ferreira et al. (2012) propose to
parameterize generic norm-induced uncertainty sets based
on principal component analysis (PCA) and minimum
power decomposition (MPD). Ning and You (2017) pro-
pose to adopt the Dirichlet process (DP) mixture model
to extract the support information from data. By using
the union of several basic norm-induced uncertainty sets,
the resulting uncertainty set provides better representation
capability. In virtue of support vector clustering (SVC),
Shang et al. (2017) propose an effective kernel learning
approach to construct a non-parametric uncertainty set.
An attractive feature of this work is that the fraction of
data coverage can be explicitly controlled in the modeling
stage, which provides considerable convenience in practical
use. In addition, only quadratic programs (QPs) need to
be solved, which are computationally thrifty.

Under high-dimensional uncertainty, it is often the case
that significant correlations exist. This phenomenon is
typically termed as data rich but information poor. More
concretely, there exists a low-dimensional subspace that
explains most information within high-dimensional data.
Under such circumstance, some data-driven approaches
may lose effects due to the ignorance of the reduced-
dimensional subspace. For example, the kernel learning
approach proposed by Shang et al. (2017) is typically
prone to the curse of dimensionality. To reasonably ap-
proximate the high probability region of high-dimensional
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uncertainty, one needs to collect millions of data samples
for modeling, which is rather unrealistic in practice.

Therefore, in this article, we develop an efficient data-
driven approach tailored to RO problems under high-
dimensional uncertainty. To construct the data-driven un-
certainty set, we propose to first carry out dimension
reduction by means of PCA. Then the SVC-based and the
generic norm-induced uncertainty sets are adopted to char-
acterize variations in the low-dimensional principal sub-
space (PS) and residual subspace (RS), respectively. The
rationale lies in that, since most information is abstracted
in the low-dimensional PS, it deserves more attention and
its complicated geometry shall be subtly described. This
is achieved by harnessing the modeling power of the SVC-
based uncertainty set proposed by Shang et al. (2017).
Meanwhile, generic polyhedral uncertainty sets suffice to
capture the slight variations within the RS. In this way,
a data-driven uncertainty set can be developed, which
accurately delineates the shape of high-dimensional un-
certainty data, and turns out to be helpful for deriving
high-quality solutions and reducing conservativeness. The
proposed uncertainty set leads to a tractable reformulation
of RO problems with linear constraints, which brings com-
putational benefits. We further establish the probabilistic
guarantee in theory by calibrating the uncertainty set after
the modeling phase, which ensures that the data-driven
uncertainty set covers a certain portion of uncertainty with
a given confidence level. Numerical examples are presented
to demonstrate the effectiveness of the proposed approach
in alleviating the curse of dimensionality brought by high-
dimensional uncertainty in RO problems.

2. PRELIMINARIES

2.1 SVC-Based Uncertainty Set Constructions using the
Weighted Generalized Intersection Kernel

SVC is a well-established machine learning approach for
estimating the support of an unknown distribution from
observation data (Ben-Hur et al. (2001)). The optimization
problem of SVC aims at minimizing the radius R of a
circle enclosing most data samples {φ(u(i))} in the feature
space while penalizing potential outliers residing outside
the circle:

min
a,R,ξ

R2 +
1

Nν

N∑
i=1

ξi

s.t. ||φ(u(i))− a||2 ≤ R2 + ξi, i = 1, · · · , N
ξi ≥ 0, i = 1, · · · , N

(1)

where a is the center of the circle, φ(·) denotes the fea-
ture mapping, and the slack variable ξ indicates whether
φ(u(i)) lies outside the circle. ν is a regularization param-
eter used to balance between minimizing the volume of
the circle and penalizing outliers. By introducing Lagrange
multipliers α, we could arrive at the following equivalent
dual problem, which is a QP:

max
α
−

N∑
i=1

N∑
j=1

αiαjK(u(i),u(j)) +

N∑
i=1

αiK(u(i),u(i))

s.t. 0 ≤ αi ≤ 1/Nν, i = 1, · · · , N
N∑
i=1

αi = 1

(2)

where K(u(i),u(j)) = φ(u(i))Tφ(u(j)) stands for the
kernel function. The radial basis function (RBF) kernel
K(u,v) = exp{−||u−v||2/2σ2} is mostly adopted in SVC.
However, as pointed in Shang et al. (2017), the RBF kernel
is unsuitable for uncertainty set construction because
the computational tractability of RO problems will be
disrupted. For this reason, Shang et al. (2017) further
propose the following weighted generalized intersection
kernel (WGIK):

K(u,v) =

n∑
k=1

lk − ||Q(u− v)||1, (3)

which leads to the following data-driven uncertainty set:

USVC(ν,D) =
{
u
∣∣||φ(u)− p||2 ≤ R2

}
=

{
u

∣∣∣∣∣∑
i∈SV

αi||Q(u− u(i))||1 ≤ θ

}
(4)

where

θ =
∑
i∈SV

αi||Q(u(i′) − u(i))||1, i′ ∈ BSV. (5)

It can be observed that the data-driven uncertainty set
Uν(D) is essentially a polyhedron, defined based on SVs
with αi > 0, thereby bearing a non-parametric scheme. In
this way, it can preserve the tractability of RO problems.

A desirable feature of USVC(ν,D) is that it approximately
covers (1 − ν) × 100% of N training data samples, which
provides a convenient way to adjust the conservative of the
uncertainty set.

2.2 PCA for Dimension Reduction

PCA is a basic method for dimension reductions. Assume
that all available data samples have been stacked into a
data matrix X ∈ RN×m, and each dimension has been
scaled to zero mean and unit variance. Performing singular
value decomposition (SVD) on the covariance matrix of
data yields:

R =
1

N − 1
XTX = UΛUT, (6)

where Λ = diag{λ1, · · · , λm} is a diagonal matrix whose
diagonal elements are arranged in a descending order.
Denoting by P = U(:, 1 : A) the matrix formed by
eigenvectors in U associated with A largest eigenvalues,
we could obtain the following PCA model for dimension
reduction:

X = TPT + T̃P̃T (7)

T = XP (8)

T̃ = XP̃ (9)

where T ∈ RN×A and T̃ ∈ RN×(m−A) are the score
matrices for principal components (PCs) and residuals,

respectively. P ∈ Rm×A and P̃ ∈ Rm×(m−A) are loading
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matrices for PCs and residuals. A is the number of PCs.
X̂ = TPT explains most variations in high-dimensional
PS, while X̃ = T̃P̃T primarily reveals unimportant noise
in RS.

3. A DATA-DRIVEN ROBUST OPTIMIZATION
APPROACH UNDER HIGH-DIMENSIONAL

UNCERTAINTIES

3.1 Data-Driven Construction of Uncertainty Sets

The classic PCA model (7)-(9) makes only use of second-
order information within data. In one sense, it falls short
of describing more intricate geometry of data space, espe-
cially the variations in the low-dimensional PS. The loss of
high-order information may lead to suboptimal solutions
to RO problems. Therefore, we propose to further describe
the variations in PS in virtue of the modeling power of
SVC. That is, to run the SVC algorithm with N score
samples T = {t(i)} based on a pre-specified ν, where t(i) is
the ith column of TT, and hence whitening matrix adopted

in (3) is given by Q = Λ−
1
2 . We denote this uncertainty

set obtained as Uν(T ).

To characterize tiny variations within the RS, we propose
to employ traditional norm-based polyhedral set:

Upoly(Γ) =

{
t̃

∣∣∣∣∣∑
k

|t̃k| ≤ Γ

}
, (10)

where Γ is the budget parameter for controlling the size of
Upoly(Γ).

By delineating variations within two subspaces individ-
ually, we propose a new data-driven uncertainty set for
high-dimensional uncertainty, formally expressed as:

Uν,A,Γ(D) =

u

∣∣∣∣∣∣∣
u = Pt + P̃t̃

t ∈ USVC(ν, T )

t̃ ∈ Upoly(Γ)

 . (11)

Due to the orthogonal property of the loading matrix
[P P̃], we can further rewrite Uν,A,Γ(D) as the intersection
of two basic uncertainty sets:

Uν,A,Γ(D)

=
{
u
∣∣PTu ∈ USVC(ν, T )

}
∩
{

u
∣∣∣P̃Tu ∈ Upoly(Γ)

}
, UPS ∩ URS

(12)

Notice that the proposed data-driven uncertainty set is
essentially parameterized by three parameters {A, ν,Γ}.
The selection of the number A of PCs can be made based
on existing methods for PCA, such as the cumulative
percent variance (CPV) criterion, the Akaike information
criterion (AIC), the minimum description length (MDL)
criterion, and so on. As with the determination of values
of ν and Γ, it will be discussed in the sequel.

3.2 Tractable Reformulation

A key attribute of uncertainty sets in RO is that they must
lead to tractable reformulations of optimization problems.
It has been proved by Shang et al. (2017) that the SVC-
based uncertainty set enables an LP reformulation of
the worst-case robust linear constraint. In fact, for the

proposed uncertainty set Uν,A,Γ(D), we could also establish
a similar result based on the following theorem.

Theorem 1: The worst-case robust linear constraint

max
ξ∈Uν,A,Γ(D)

ξTx ≤ b (13)

is equivalent to the following problem:

∑
i∈SV

(µi − λi)
TQt(i) + ηθ + pΓ ≤ b∑

i∈SV

Q(λi − µi) + PTx = 0

λi + µi = η · αi · 1, λi,µi ∈ RA+, ∀i ∈ SV

η ≥ 0

p ≥ |p̃T
k x|, ∀k = 1, · · · ,m−A

(14)

which is essentially an LP.

The proof is omitted here due to page limitations. It can
be obtained by using the strong duality of LPs as well as
the boundness of UPS and URS .

3.3 Data-Driven Calibration with Probabilistic Guarantee

In a data-driven context, the resulting uncertainty set is
uncertain itself because data collected contain random-
ness. Therefore, a desirable data-driven uncertainty set
should contain the high-density region of uncertainty with
high confidence. Therefore, we focus on the following prob-
abilistic guarantee (Hong et al. (2016)):

PD {P(ξ ∈ U(D)) ≥ 1− α} ≥ 1− β. (15)

Here, PD{·} is taken with respect to data, whose sampling
involves uncertainty, while P{·} is taken with respect to the
uncertainty ξ. The fraction of uncertainty coverage to be
achieved is denoted as 1− α, whereas the confidence level
of the event P(ξ ∈ U(D)) ≥ 1−α is 1−β. An efficient data-
driven strategy for uncertainty set calibration is proposed
by Hong et al. (2016), which ensures (15) to hold. The
idea is to split all available data D into a training dataset
D1 and a calibration dataset D2, which include N1 and
N2 data samples, respectively. A basic requirement to
employ this procedure is that U(D) can be expressed in
a parametric form of

U(D) = {ξ |h(ξ) ≤ 0} , (16)

where h(ξ) is a certain scalar function established using
the training dataset D1 in the first step. After that, we
compute the value of h(ξ) on the calibration dataset D2

and obtain {h(ξn), ξn ∈ D2}, which can be further ordered
as h(ξ(1)) < h(ξ(2)) < · · · < h(ξ(N2)). Computing the
optimal index r∗ as

r∗ = min

{
r :

r−1∑
k=0

(
N2

k

)
(1− α)kαN−k ≥ 1− β

}
, (17)

and further calibrating the data-driven uncertainty set as

U(D) =
{
ξ
∣∣∣h(ξ) ≤ h(ξ(r∗))

}
, (18)

the probabilistic guarantee (15) will hold for the uncer-
tainty set (18) after calibrations (Hong et al. (2016)). In
addition, due to the discrete nature of the minimizer r∗,
the true confidence level 1− βtrue can be derived as

1− βtrue =

r∗−1∑
k=0

(
N2

k

)
(1− α)kαN−k (19)
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which will be always larger than it prespecified value 1−β.

Our goal is to devise a similar scheme that ensure the prob-
abilistic guarantee for the proposed data-driven uncertain-
ty set (12). However, the aforementioned result cannot be
directly applied. Notice that (12) can be regarded as the
intersection of two basic uncertainty sets having the form
of (16). Based on such an observation, we establish the
following theorem:

Theorem 2: For the proposed uncertainty set (12), if

PD {P(ξ ∈ UPS) ≥ 1− α · zα1 } ≥ 1− β · zβ1 , (20)

and

PD {P(ξ ∈ URS) ≥ 1− α · zα2 } ≥ 1− β · zβ2 (21)

with
zα1 + zα2 = 1, zβ1 + zβ2 = 1, (22)

then the following probabilistic guarantee holds

PD {P(ξ ∈ Uν,A,Γ(D)) ≥ 1− α} ≥ 1− β. (23)

Proof: We denote the events ξ ∈ UPS , ξ ∈ URS and
ξ ∈ Uν,A,Γ(D) as B1, B2 and B, respectively, and

P(B1) ≥ 1− α · zα1 (24)

P(B2) ≥ 1− α · zα2 (25)

P(B) ≥ 1− α (26)

as C1, C2 and C, respectively. Notice that B = B1 ∩ B2.
Next we show that C ⊇ C1 ∩ C2. Assume that (21) and
(22) hold, then we have:

P(B) = P(B1 ∩B2)

≥ P(B1) + P(B2)− 1

= (1− α · zα1 ) + (1− α · zα2 )− 1

= 1− α

(27)

where the second inequality arises from a well-known
probability inequality. This indicates the event C must
occur on the condition of C1 ∩ C2. Then we can proceed
in the following way:

PD{C} ≥ PD{C1 ∩ C2}
≥ PD{C1}+ PD{C2} − 1

= (1− β · zβ1 ) + (1− β · zβ2 )− 1

= 1− β

(28)

This completes the proof.

The above theorem indicates that, we only need to es-
tablish probabilistic guarantees for two uncertainty sets,
respectively. This can be easily done by directly adopting
the procedure proposed by Hong et al. (2016) twice, since
both UPS and URS admit parametric expressions in the
form of (16):

UPS =

{
u

∣∣∣∣∣∑
i∈SV

αi||Λ−
1
2 (PTu− t(i))||1 − θ ≤ 0

}
, (29)

URS =
{

u
∣∣∣||P̃Tu||1 − Γ ≤ 0

}
. (30)

To build the SVC-based uncertainty set in PS, a reasonable
choice of ν is to set it as α in practice, because the SVC-
based uncertainty set will approximately capture (1 −
ν) × 100% of data samples in D1, which is in line with
the spirit of the probabilistic guarantee implying that
P(ξ ∈ Uν,A,Γ(D)) ≥ 1 − α holds with high proability. In

addition, we suggest using zα1 = zα2 = zβ1 = zβ2 = 1/2 as a
trivial choice.

4. A NUMERICAL EXAMPLE

4.1 Numerical Experiment Setup

In this section, we verify the effectiveness of the proposed
data-driven uncertainty set in RO based on a numerical
example. We consider the following simple RO problem:

max
x

min
u

cTx

s.t. aTx + uTx ≤ b
Dx ≤ f

(31)

where x ∈ R10 includes decision variables. u ∈ R10

represents random perturbations on the coefficients a.
Here only the first constraint is affected by uncertainties,
and the remaining ones are expressed as Dx ≤ f . It is
assumed that we do not know the distribution of u but
have some data samples {u(i)}, which are generated by
means of a latent variable model:

u = Wz + ε. (32)

Here z ∈ R2 include latent variables, W is a transforma-
tion matrix, and ε denotes an isotropic measurement noise
following Gaussian distribution. Therefore, u will have sig-
nificant correlations, and most variations can be explained
by a two-dimensional latent subspace. We generate three
different datasets, in which the latent variables z follow
Gaussian distribution, mixture Gaussian distribution, and
bivariate Gamma distribution, respectively.

4.2 Optimization Performance of the Proposed Uncertainty
Set

We first compare the optimization performance of the
proposed method with the RO method based on the
generic SVC-based uncertainty set proposed by Shang
et al. (2017). Since (31) is an RO problem with a linear
robust constraint, it can be easily transformed into an
equivalent LP based on both uncertainty sets. The QPs
involved modeling SVC are solved using the CVX package
in MATLAB 2016a, and the resulting equivalent problems
in the form of LP are solved with CPLEX.

The optimization performances under three different set-
tings of uncertainties are reported in Fig. 1. In each setting,
100 samples are collected as training data for uncertainty
set constructions. The number of PCs in the proposed
uncertainty set is set as 2. We deliberately set the value of
Γ as the maximum on the training dataset so as to capture
all variations in RS. In this way, the conservatism of both
the generic SVC-based uncertainty set and the proposed
one can be adjusted by the same parameter ν, leading to
a fair comparison. That is, with the same value of ν used,
two uncertainty sets have nearly the same fractions of data
coverage. As can be seen from Fig. 1, when ν increases, the
sizes of both uncertainty sets become smaller, the solutions
become less conservative, and higher objective values will
be obtained. Most importantly, the proposed uncertainty
set induces much higher objective values than the SVC-
based uncertainty set under the same value of ν, indi-
cating less conservative solutions. This can be explained
by the fact that the generic SVC-based uncertainty set
directly models a 10-dimensional data space with only 100
available data samples, thereby being prone to the curse
of dimensionality. By contrast, the proposed uncertainty
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set captures the variations in the low-dimensional PS,
thereby effectively alleviating the curse of dimensionality
and giving a compact expression of the uncertainty set.
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Fig. 1. Optimization performance comparisons of two
robust optimization approaches.

Next, we examine the effect of the number of PCs on
the optimization performance. The dataset with Gaussian
distributed latent variables is used here. The correspond-
ing results with different values of A are shown in Fig.
2. When A = 1, a large portion of information is still
present in the RS, which cannot be well addressed by using
a box uncertainty set. Therefore, the worst performance is
obtained in the case of A = 1. When A = 2 and A = 3,
the best performances can be derived, which is in line
with the physical truth that a two-dimensional subspace
explains most information of uncertainty variations. When
A = 4, the performance begins to deteriorate. It implies
that due to the curse of dimensionality, the approximation

performance of kernel methods tends to be worse when
the dimension of data space becomes higher. It shows the
necessity to carry out dimension reduction to tackle high-
dimensional uncertainties with inherent correlations.
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Fig. 2. Optimization performance based on the proposed
uncertainty set with different number of PCs.

4.3 Performance of the Data-Driven Calibration Approach

In this subsection, we investigate the performance of the
data-driven approach to uncertainty set calibrations by
executing Monte Carlo simulations. We first investigate
the effect of N1 on optimization performance by varying
N1 and fixing N2. {α, β} are set as α = 0.05 and
β = 0.05, and the optimal index r∗ for model calibration
is calculated based on (17). We perform Monte Carlo
simulations by randomly generating data samples D based
on the latent variable model (32), with the latent variable
following the mixture Gaussian distribution. Each time we
build an uncertainty set based on D1, while calibrating the
uncertainty set with D2 based on the proposed strategy.
After that, we solve the RO problem with the calibrated
uncertainty set. We repeat this process 1,000 times, and
the mean value and the standard deviation (s.t.d.) of
objective values in 1,000 replications are calculated, which
are reported in Table 1.

Table 1. Optimization Performance with Dif-
ferent Sizes of D1

N1 N2 Mean of Objective s.t.d. of Objective

50 500 48.0537 2.1765
100 500 48.2876 1.6802
150 500 48.4716 1.2935

We can observe from Table 1 that when N1 increases,
the mean value of the optimal value also increases, and
the s.t.d. of the optimal value decreases. This is rational
because when more data samples enter into the model
training phase, the estimation of the uncertainty set shall
become more reliable, and hence conservatism of solution
shall be reduced. It indicates that the proposed approach
can effectively utilize information underlying data as an
asset. When more data are utilized, more meaningful
information can be extracted and integrated into the
optimization model.

Finally, we investigate effect of the split ratio N1/N2 on
optimization performance when the number of available
samples is fixed. We assume that there are N = 1000 data
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Table 2. Optimization Performance with Different Split Ratios of Available Data

N1 N2 β̂ βtrue Mean of α̂ s.t.d. of α̂ Mean of Objective s.t.d. of Objective

65 935 0.0060 0.0498 0.0327 0.0058 48.5552 1.7552
166 834 0.0050 0.0500 0.0319 0.0061 48.9297 1.0863
268 732 0.0050 0.0500 0.0320 0.0062 48.9463 1.0950
373 627 0.0120 0.0498 0.0301 0.0069 49.0794 0.7969
481 519 0.0120 0.0498 0.0292 0.0078 49.0446 0.7962
593 407 0.0120 0.0498 0.0276 0.0084 48.9522 0.8133
713 287 0.0130 0.0494 0.0261 0.0092 48.8240 0.8634

samples available in total. The results are listed in Table
2. Again, we generate the entire dataset D 1,000 times,
and each time we evaluate the value P(ξ ∈ Uν,A,Γ(D))
empirically based on an independent dataset including
10,000 samples. In this way, the occurrence of the event
P(ξ ∈ Uν,A,Γ(D)) ≥ 1−α as well as an empirical value of α

can be evaluated. Finally, the value of β̂ can be calculated
by averaging the results of 1,000 Monte Carlo simulations.

By deliberately choosing the values of N2, the true values
βtrue are nearly identical to the specified value 0.05 in

all cases. We can see that the empirical values of β̂ are
both smaller than the theoretical value, thereby verifying
the correctness of the established probabilistic guarantee.

By taking a closer look at the variation trends of β̂ and
the mean of α̂, we can observe that with N1 increasing
the mean value of α̂ tends to decrease, and the value

of β̂ tends to increase. It indicates that when more data
are used for model training, the confidence level that we
observe the event P(ξ ∈ Uν,A,Γ(D)) ≥ 1 − α becomes
lower, whereas the actual “volume” of the uncertainty
set becomes larger. This shows a trade-off underlying
the probabilistic guarantee that we cannot simultaneously
increase the data coverage and the confidence level. As
with the optimal value, we can see that a balance shall be
made between N1 and N2, since the case with N1 = 373
gives the highest objective value on average, as well as the
smallest s.t.d. It implies that the split ratio of the entire
dataset should be carefully tuned in practice to reduce the
conservatism and obtain a high-quality solution.

5. CONCLUSION

In this article, we put forward a new data-driven un-
certainty set to deal with high-dimensional uncertainty
in RO problems. PCA is performed on high-dimensional
uncertainty data to decompose the data space into PS and
RS. Then the generic SVC-based uncertainty set and the
polyhedral uncertainty set are adopted to characterize the
variations within PS and RS, respectively. In this way,
more intricate geometry of high-dimensional uncertainties
can be described by the proposed data-driven uncertainty
set, and the curse of dimensionality can be mitigated. Due
to the data-driven nature of the proposed approach, the
uncertainty set itself has some randomness. We establish a
probabilistic guarantee by using a portion of available data
to calibrate the uncertainty set, which ensures that the
uncertainty set can capture a prespecified portion of un-
certainty with high probability. Numerical case studies are
conducted to demonstrate the advantages of the proposed
data-driven approach to uncertainty set constructions, and
the effectiveness of the calibration procedure in ensuring
the probabilistic guarantee.
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