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Abstract: This paper presents a modeling approach for a class of multiphase chemical
systems, based on non-equilibrium thermodynamics, specialized to an open flash-drum system.
A compartmental model is considered to establish the dynamics of the gas and liquid phases,
while a model of interface transport yields to constraints in the model. The overall system is
thus written as a Differential-Algebraic system of Equations (DAE). The derived model is shown
to be of index one, for which a stability analysis, based on Lyapunov first method, is briefly
developed. An example is presented to illustrate the proposed modeling and stability analysis
approach, together with numerical simulations.
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1. INTRODUCTION

Despite historical and contemporary significance, design,
operation and control of distillation processes have proven
to be difficult tasks (Skogestad, 1997; Taylor and Krishna,
2000). Analysis and model-based feedback control design
for multiphase chemical systems are still challenging prob-
lems. In this article, we explore the possibility of model-
ing a special case of multiphase systems, the open flash-
drum, using a physics-based non-equilibrium thermody-
namic model. In contrast with traditional equilibrium for-
mulations, non-equilibrium models are capable of tracking
irreversible phenomena such as entropy production and
energy degradation (de Groot and Mazur, 1984). Model-
ing techniques taking into account irreversible phenom-
ena have led to useful insights for stability analysis and
feedback control design in the chemical process systems
literature (Alonso and Ydstie, 1996; Ydstie and Alonso,
1997; Favache and Dochain, 2009; Garćıa-Sandoval et al.,
2015; Ydstie, 2016).

A key theory used in the analysis and control of physi-
cal systems was originally developed by Willems (1972)
who proposed dissipative systems theory as an extension
of classical (linear) passivity-based analysis. Dissipative
systems analysis has been established as a practical tool
for analysis and control design of mechanical and electrical
systems. As for chemical process systems, thermodynamic-
based dissipative systems theory has received an increasing
level of attention in the literature. Ydstie and Alonso
(1997) introduced the concept of dissipativity for chemical
process systems using the first and second laws of ther-
modynamics. Favache and Dochain (2009) explored the

possibility of characterizing the continuous stirred tank
reactor through energetic and entropic formulations with
insightful results. These studies, and most of the literature
on applications of dissipative systems theory to chemical
process systems, focus on simple thermodynamic systems,
in particular single-phase homogeneous systems. Studies
on complex composite processes, for example multiphase
systems, are still unexplored from a physics-based analysis
perspective.

The study of multiphase processes from a system perspec-
tive can be traced back to the pioneering work of Rosen-
brock (1963), who demonstrated that a non-ideal binary
distillation column operates at a unique asymptotically
stable steady state. Based on geometric considerations,
Rouchon and Creff (1993) developed stability analysis for a
multicomponent flash-drum. Unfortunately, this approach
does not extend to multistage process units. A more recent
contribution can be found in the work of Ydstie (2016),
where conditions for the existence of a unique stable
steady-state for an adiabatic flash-drum were established.
To the best of the authors knowledge, there are no results
on the stability of multiphase chemical units far from
equilibrium, in particular for open liquid-vapor process
units exchanging mass and energy with the environment.

The absence of physics-based stability criteria for com-
posite systems in the literature follows as a consequence
of the convexity properties of thermodynamic potentials
in multiphase processes. For a simple thermodynamic sys-
tem, these potentials are convex functions of the extensive
variables (Callen, 1985), as depicted in Figure 1 (left).
Such convexity properties permit to assess for stability
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and to build control structures using dissipative systems
theory, as proposed by Favache and Dochain (2009) and
Garćıa-Sandoval et al. (2015). The convexity properties
are lost however when considering composite thermody-
namic systems and systems going through phase changes
(Gromov and Caines, 2015). The existence of multiple
phases follows as a consequence of the loss of convexity
in thermodynamic potentials (Callen, 1985), see Figure 1
(right). We believe that one of the keys to develop stability
criteria for multiphase processes lies in the non-convex
nature of composite systems. To account for the loss of
convexity for this class of systems, we propose to consider
non-equilibrium thermodynamics to track the dynamical
evolution of the system.

Fig. 1. Entropy for a liquid and a liquid-gas system.

Stationary non-equilibrium liquid-vapor systems were
studied by Krishnamurthy and Taylor (1985) for model-
ing purposes. Their work considers a multiphase process
globally far from equilibrium, where inhomogeneities be-
tween phases could arise. Each subsystem in their work
(liquid phase, gas phase, and the interface) is considered
to be locally at thermodynamic equilibrium. In this ar-
ticle, we present a model for a flash-drum evolving on a
non-equilibrium manifold, extending the work of Krishna-
murthy and Taylor (1985) to dynamic regimes. We then
briefly discuss the stability of multiphase systems using
the resulting model.

The paper is organized as follows. In Section 2, the non-
equilibrium flash-drum differential-algebraic (DAE) model
is presented considering mass and energy conservation
principles for gas and liquid phases. The DAE model takes
into account exchange processes through the interface,
viewed as constraints on the dynamics. In Section 3, the
linearized DAE is rewritten as a system of differential
equations (ODE). Then, Lyapunov first method is pro-
posed to characterize the stability of the ODE. A numeri-
cal example is presented in Section 4 for a non-ideal water-
methanol liquid gas mixture. Results and future areas for
research are discussed in Section 5.

2. FLASH-DRUM MODEL

In this section, a nonlinear differential algebraic system
is built from conservation principles to describe the non-
equilibrium flash-drum dynamics. The first postulate of
thermodynamics (Callen, 1985) states that a system is
completely characterized once the internal energy U , the
volume V , and the mole numbers of each component
Nj are set. In turn, when a system interacts with its
surroundings, the state (U, V,Nj) evolves according to
the first and second laws of thermodynamics. For open
systems, these laws lead to nonlinear differential-algebraic

systems (DAE systems) that describe the evolution of
the physical properties for a system interacting with its
surroundings (Bird et al., 2002; Sandler, 1999).

2.1 Conservation principles

Consider an open rigid flash-drum with c components,
depicted in Figure 2. Mass and energy flow in and out
between the system and the environment. In addition,
mass and energy are exchanged between phases at rates
e (J/sec) and n (mol/sec), respectively.

Fig. 2. Mass and energy flows in a flash-drum

For modeling purposes, the following assumptions are
considered:

(i) Each phase is perfectly mixed;
(ii) No significant variations in potential energy occur in

the system; and,
(iii) Compressibility and viscous effects are negligible.

Under the above assumptions, the liquid phase dynamics
is described as

Ṅl,j = Fl,Nj ,in −Nl,j
Fl,V
Vl
− nl,j , j = {1, ..., c− 1,Ω}

(1a)

K̇l = Fl,K,in −Kl
Fl,V
Vl
− Pl

(
V̇ + Fl,V

)
− el,K (1b)

U̇l = Fl,U,in − Ul
Fl,V
Vl
− el,U , (1c)

similarly, the gas phase dynamics is given by

Ṅg,j = Fg,Nj ,in −Ng,j
Fg,V
Vg

+ ng,j , j = {1, ..., c− 1,Ω}

(2a)

K̇g = Fg,K,in −Kg
Fg,V
Vg
− Pg

(
V̇ + Fg,V

)
+ eg,K (2b)

U̇g = Fg,U,in − Ug
Fg,V
Vg

+ eg,U , (2c)

where we have written K = Mv2/2 for the kinetic en-
ergy in each flowing phase; FNj ,in, FK,in, FU,in for molar,
mechanical and internal energy inflow rates; FV for the
volumetric outflow rates; P represents the pressure of each
bulk phase; subscripts l and v refer to liquid and gas phases
variables, respectively. The sub-index Ω is introduced to
represent total amounts, and flow terms nj , eK , eU repre-
sent the rate at which moles, kinetic and internal energy
are transferred between phases.

The liquid holdup sets the volume space for each phase
following
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Vl =
∑c
j=1 V̄l,jNl,j (3a)

Vg = VΩ − Vl, (3b)

where the total volume VΩ is fixed by the size of the flash-
drum and the partial molar volume of component j, V̄l,j ,
is a fixed thermodynamic parameter. The gas pressure is
set using the generalized gas law

Pg = ZRCgTg, (4a)

where Z corresponds to the compressibility factor of the
gaseous mixture; R stands for the gas constant; and
concentration is given as the mole/volume ratio C =
NΩ/V . Isobaric operation in the liquid phase is assumed
to be given as

Pl = Pl,in, (4b)

where Pl,in corresponds to the pressure in the liquid inflow.
Neglecting mixing effects, the relation between the energy
holdup and the temperature for each phase corresponds to

Ul =
∑c
j=1Nl,jŪl,o,j +Nl,j C̄v,g,j(Tg − Tl,o) (5a)

Ug =
∑c
j=1Ng,jŪg,o,j +Ng,j C̄v,l,j(Tl − Tg,o), (5b)

where Ūo represents a partial molar internal energy refer-
ence state at temperature To; and C̄v,j stands for the molar
heat capacity for component j. Flow velocity is considered
as a state function of the flow velocity v, which in turn
depends on the kinetic energy of the phase

Fl,V = Al,outvl, vl =
√

2Kl/Ml (6a)

Fg,V = Ag,outvg, vg =
√

2Kg/Mg (6b)

where Aout stands for outflow cross sectional area, and
M =

∑c
1 M̄jNj represents mass holdup in the bulk-phase.

Equations (3)-(6) stand as the constitutive equations for
the model (1)-(2). In the next section, the model de-
scription is completed by describing the interface trans-
port rates (nl,j , el,u, el,k, ng,j , eg,u, eg,k) as function of irre-
versible processes occurring around the interface.

2.2 Interface transport rates

Two boundary layers are assumed to surround the gas-
liquid interface, as depicted in Figure 3. The interface
between the layers is assumed to be locally at thermody-
namic equilibrium with composition (xi,1, yi,1, . . . , xi,c, yi,c)
temperature Ti, and pressure Pi. The interfacial values are
given as the solution to a boundary value problem, where
the boundary conditions are set by the bulk-phases (Taylor
and Krishna, 2000).

Fig. 3. Interface in a liquid-vapor System

Inhomogeneities between both bulk-phases are the driving
forces between mass and energy flows across the interface.

Molar transport is the addition of diffusive and convective
transport processes (Taylor and Krishna, 2000). Neglect-
ing multicomponent coupled diffusion we can write

nl,j = kl,jCl(xj − xi,j) + xjnΩ, j = 1, . . . , c− 1 (7a)

ng,j = kg,jCg(yi,j − yj) + yjnΩ, j = 1, . . . , c− 1, (7b)

where kl,j and kg,j stand for mass transport coefficients
in liquid and gas boundary layers, respectively; and nΩ :=∑
nl,j =

∑
ng,j corresponds to the total molar flow across

the interface.

The total energy flowing across the interface is the sum
of thermal, convective, and kinetic energy transport phe-
nomena (Bird et al., 2002)

el = hl,i(Tl − Ti) +
∑c
j=1 H̄l,jnl,j + 1

2v
2
l,imΩ (8)

eg = hg,i(Ti − Tg) +
∑c
j=1 H̄g,jng,j + 1

2v
2
g,imΩ, (9)

where hl,i and hg,i represent conductive transport coeffi-
cients; H̄j stands for the partial molar entropy of compo-
nent j; mΩ :=

∑
M̄jnl,j =

∑
M̄jng,j corresponds to the

total mass flowing through a boundary layer; and,

vl,i = mΩ/(Aiρl), vg,i = mΩ/(Aiρg),

represent the average velocity of the flow crossing the
boundary layers (not to be confused with the bulk-phase
convective outflow velocities vl and vg). In the previous
equation, Ai stands for the interface area, and ρ for the
density.

The mechanical energy of a fluid flow accounts for three
energy components: kinetic energy, potential energy, and
PV work. Since potential energy variations are neglected,
mechanical energy flowing across the interface is written
as

el,K = 1
2v

2
l,imΩ + PlṼlmΩ (10a)

eg,K = 1
2v

2
g,imΩ + PgṼgmΩ, (10b)

where Ṽ = 1/ρ stands for the volume per unit of mass
of the flow. The internal energy flow-rate corresponds to
what remains when subtracting the mechanical energy flow
from total energy being transported through the interface,

eU := e− eK .
Neglecting enthalpy diffusive transport, the internal en-
ergy flows correspond to

el,U = hl,i(Tl − Ti) +
∑c
j=1 Ūl,jnl,j (11a)

eg,U = hg,i(Ti − Tg) +
∑c
j=1 Ūg,jng,j (11b)

Careful inspection of equations (7)–(11) reveals that we
can write the interface transport rates as functions of 2c+3
interface variables

(yi,1, xi,1, . . . , xi,c, yi,c, Ti, Pi, nΩ), (12a)

together with interface boundary conditions

(Tg, Tl, Pg, Pl, Cg, Cl, x1, . . . , xc−1, y1, . . . , yc−1), (12b)

given by the bulk-phases. In the next section, the interface
is described as a nonlinear algebraic system.

2.3 Interface algebraic system

The interface for a non-homogeneous stationary system
was first presented by Krishnamurthy and Taylor (1985).
Their study relies on describing interfacial temperature
Ti, pressure Pi, and compositions (xj , yj) using two fun-
damental assumptions:
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(iv) Neither mass nor energy accumulate in the boundary
layers surrounding the interface, nor in the interface
itself; and,

(v) The interface, seen as the contact surface between
both boundary layers, is locally at thermodynamic
equilibrium.

Equality in molar flow rates (7)

kg,jCg(yi,j − yj) + yjnΩ = kl,jCl(xj − xi,j)− xjnΩ

j = 1, . . . , c− 1, (13)

and equality in energy flow rates (8)

hg,i(Ti − Tg) +
∑c
j=1 H̄g,jng,j + 1

2v
2
g,imΩ

= hl,i(Tl − Ti) +
∑c
j=1 H̄l,jnl,j + 1

2v
2
l,imΩ, (14)

follow from assumption (iv). Local equilibrium, assump-
tion (v), requires that

yi,j = Kj(Ti, Pi, xi,1, . . . , xi,c)xi,j , j = 1, . . . , c (15a)

1 =
∑c
j=1 xi,j (15b)

1 =
∑c
j=1 yi,j , (15c)

where Kj(·) represents the nonlinear liquid-vapor com-
position ratio. To complete the system description, we
balance the mechanical energy around each boundary layer
surrounding the interface. Assuming that the fluid velocity
is approximately the same close to the interface, we write

Pl − Pi
ρl

− Pg − Pi
ρg

=
1

2

(
v2
g,i − v2

l,i

)
. (16)

Equations (13)–(16) sum to 2c+ 3 equations, that depend
on 2c+ 3 interface variables (12a), and on 2c+ 4 intensive
variables (12b) that depend on the state of each bulk-
phase. In the next section, the bulk-phase description is
put together with the algebraic system defining the flash-
drum DAE system.

2.4 Flash-drum differential algebraic system

Interface transport equations (13)–(16) are written in
terms of intensive variables. To match the interface and
bulk-phase descriptions, the bulk-phase dynamics (1)–
(6) is rewritten as differential equations of the intensive
variables:

(a) Temperature variations

Cv,gṪg = Fg,V,in(Tg,in − Tg)C̄v,g,in
+ hg,∞(Tg,∞ − Tg) + hg,i(Ti − Tg) (17a)

Cv,lṪl = Fl,V,in(Tl,in − Tl)C̄v,l,in
+ hl,∞(Tl,∞ − Tl)− hl,i(Tl − Ti) (17b)

where C̄v =
∑c
j=1 Cj C̄v,j and Cv = V

∑c
j=1 Cj C̄v,j

represent molar and total heat capacities respectively,
and h∞ is the thermal conductivity constant for a heat
exchanger at temperature T∞.

(b) Composition variations

CgVg ẏj = Fg,V,inCg,in (yj,in − yj) (18a)

+ kg,jCg(yi,j − yj), j = 1, . . . , c− 1

ClVlẋj = Fl,V,inCl,in (xj,in − xj) (18b)

− kl,jCl(xj − xi,j), j = 1, . . . , c− 1

(c) Concentration variations

VgĊg = Fg,V,inCg,in

− Cg
(
Fg,V + V̇g

)
+ nΩ (19a)

VlĊl = Fl,V,inCl,in − Cl
(
Fl,V + V̇l

)
− nΩ (19b)

(d) PV work variations

Ṗ g = ZR(TgĊg + CgṪg) (20a)

Ṗl = Ṗ lin (20b)

V̇g = −V̇l (20c)

V̇l =
∑c
j=1 V̄l,j

(
xj,inFl,V,inCl,in

− xjFl,V Cl − kl,jCl(xj − xi,j)− xjnΩ

)
(20d)

(e) Volumetric outflow variations
vlMl

Al,out
Ḟl,V =

(
1
2

(
v2
g,in − v2

g

)
ρg,in + Pg,in

)
Fg,V,in

− P (Fg,V + V̇g) +
(

1
2 (v2

i,g − v2
g) +

Pg

ρg

)
mΩ

(21a)
vgMg

Al,out
Ḟg,V = ( 1

2 (v2
l,in − v2

l )ρl,in + Pl,in)Fl,V,in

− P
(
Fl,V + V̇l

)
−
(

1
2 (v2

i,l − v2
l ) + Pl

ρl

)
mΩ

(21b)

where M = V
∑
M̄jCj represents the total mass

holdup in the flowing bulk phase.

The interface algebraic system remains as

0 = kg,jCg(yi,j − yj)− kl,jCl(xj − xi,j) + (yj − xj)nΩ,

j = 1, . . . , c− 1. (22a)

0 = hg,i(Ti − Tg)− hl,i(Tl − Ti)
+
∑c
j=1 ∆H̄jnj + 1

2 (v2
g,i − v2

l,i)mΩ (22b)

0 =
1

2
(v2
g,i − v2

l,i)−
Pl − Pi
ρl

+
Pg − Pi
ρg

(22c)

0 = yi,j −Kj(Ti, Pi, xi,1, . . . , xi,c)xi,j ,

j = 1, . . . , c. (22d)

0 = 1−
∑c
j=1 x

i
j (22e)

0 = 1−
∑c
j=1 y

i
j , (22f)

where ∆H̄j = H̄g,j − H̄l,j corresponds to the partial
enthalpy of vaporization of component j, and nj := nl,j =
ng,j .

3. LYAPUNOV FIRST METHOD FOR DAE SYSTEMS

The complete flash drum dynamic model equations (17)–
(22) is a semi-explicit DAE system of the form

ż = f(z, w, u) (23a)

0 = g(z, w), (23b)

where

z = (Tg, Tl, Pl, Pg, x1, y1, . . . , xc−1, yc−1,

Cl, Cg, Vl, Vg, Fl,V , Fg,V ) (24a)

refers to bulk-phase intensive variables,

w = (Ti, Pi, xi,1, yi,1, . . . , xi,c, yi,c, nΩ) (24b)

denotes the interface variables, and the vector

u = (Tg,in, Tl,in, Tg,∞, Tg,∞, Pl,in, Pg,in, Fl,V,in,

Fg,V,in, x1,in, y1,in, . . . , xc−1,in, yc−1,in) (24c)

stands for input variables set by the environment sur-
rounding the system.
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We briefly review stability theory for linear DAE systems,
following the Lyapunov first method. A complete exposi-
tion on Lyapunov stability for DAE systems can be found
in Yang et al. (2013). The input vector u is assumed to be
fixed as u?. Let (z?, w?) be an isolated equilibrium point
of (23), i.e.,

0 = fu(z?, w?)

0 = g(z?, w?),

where fu = f(z?, w?, u?). From Brenan et al. (1996), we
know that the semi-explicit DAE (23) is of index one if
and only if the Jacobian ∂g/∂z is non-singular. For DAE
systems of index one, the z dynamics linearized around
(z?, w?) can be written as

ż =

[
∂fu
∂z
− ∂fu
∂w

∂g

∂w

−1 ∂g

∂z

] ∣∣∣∣
(z?,w?)

(z − z?), (25)

where the partial derivatives stand for Jacobian matrices.
Lyapunov’s first method states that if the spectrum of the
linearized system (25) is contained in the left half-complex
plane, then the equilibrium point (z?, w?) is locally stable
(Yang et al., 2013). We illustrate this with an example in
the following Section.

4. EXAMPLE AND NUMERICAL SIMULATIONS

A non-ideal methanol-water mixture is considered to il-
lustrate the proposed model and its analysis. With two
components, the DAE system (23) is given by 19 equations
and 19 variables. Fixing the inputs to be at thermody-
namic equilibrium (T ?, P ?, x?, y?), the stationary state
corresponds to

z? = (T ?, T ?, P ?, P ?, x?1, y
?
1 , C

?
l , C

?
g , V

?
l , V

?
g , F

?
V , F

?
V )

w? = (T ?, P ?, x?1, y
?
1 , x

?
2, y

?
2 , 0),

where C? is determined from (3a) and (4a). Interface
temperature and liquid vapor equilibrium are set using
Antoine and Margules thermodynamic models for equilib-
rium (Sandler, 1999).

To determine the steady state, the inflow properties
are assumed at thermodynamic equilibrium at 351.24 K
(78.09oC) and 101.3 kPa (0.9998 atm); inflows are fixed
at 1 m3/s; and the liquid phase is set to occupy 10% of
the total volume VT = 1 m3. At these conditions, the
stationary state (z?, w?) has values given in Table 1.

Table 1. Stationary State

T ? = 78.09 oC, x?
1 = 0.2764, V ?

l = 0.1 m3

P ? = 101.3 kPa, y?1 = 0.6615, F ?
V = 1 m3/s

The Jacobian (∂g/∂w) is full rank at the stationary state,
making the DAE system of index one locally around the
equilibrium for the methanol-water mixture. Next, we
assess stability for two operation regimes.

4.1 Stability analysis for two operation regimes

Scenario 1 (non-isobaric operation regime). At equilib-
rium, the linearized system (25) has rank 10. The rank
deficiency follows as a consequence from the constant
inflow pressure (equation (20b) is null) and the symme-
try between the volume dynamics (20c) and (20d). The
equilibrium is not stable as the spectrum of the linearized

system contains one positive eigenvalue λ1 ≈ 6.55× 10−6.
Besides the two zero eigenvalues, the rest of the spectrum
is contained in the left half real line, between λ2 ≈ −3.45×
10−8 and λ10 ≈ −1.2× 105.

Scenario 2 (isobaric operation regime). We include a per-
fect pressure controller in the descriptor system, making
Pl = Pg = P ?. Under this assumption, the spectrum of
the linearized system contains three zeros and a two pair
of positive complex conjugate eigenvalues close to the real
axis λ1,2 ≈ −1.65× 10−7(10−4 ± j). The remaining eigen-
values are negative and go from λ3 ≈ −1 to λ9 ≈ −1.2 ×
105.

4.2 Numerical simulations for isobaric operation

We present two dynamic simulations for the stable Sce-
nario 2. The system is disturbed from stationary state by
an increase in the inflow temperature. In the first case,
the inflow temperature returns to its original value and the
system returns to its initial equilibrium; in the second case,
maintaining the inflow temperature at its higher value
leads to complete evaporation of the liquid phase.

T
l,
in

 (
o
C

)

78

79

80

T
 (

o
C

)

78

79

80

78.09

78.095

x
1
, 
y

1

0.2764

0.2764

time (s)

0 1 2 3 4 5 6 7 8

V
 (

m
3
)

0.1

0.1

0.9000

0.9000

liquid

gas

0.6615

0.6616

F
V
 (

m
3
/s

)

1

1

1

1.0007

Fig. 4. Numerical simulation 1, liquid phase trajectories
(blue) are referred to the left y-axis; gas phase trajec-
tories (red) to the right y-axis. Time is presented in
logarithmic scale.

Numerical simulation 1 (Figure 4). A ramp disturbance is
introduced in the liquid inflow temperature for 1 ≤ t < 2.
The system reacts to the disturbance and inhomogeneities
in temperature and composition appear between both
phases. As a consequence of the inhomogeneities, transfer
processes redistribute the mass and the energy in the
system. The mass redistribution causes the volume of each
phase to change. At t = 2, the inflow temperature goes
back its nominal value Tl,in = T ?. After the disturbance
is removed, the equilibrium state is recovered.

Numerical simulation 2 (Figure 5). A step disturbance in
the inflow liquid temperature is introduced. In contrast
with Scenario 1, the liquid inflow temperature remains
disturbed at Tl,in = 1.05 × T ? for t ≥ 2. This causes the
system to remain far from thermodynamic equilibrium.
As a consequence, transport processes between phases do
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Fig. 5. Numerical simulation 2, liquid phase trajectories
(blue) are referred to the left y-axis; gas phase trajec-
tories (red) to the right y-axis.

not vanish and the liquid phase evaporates completely
around t ≈ 1, 470s. For better appreciation of the dynamic
behavior, Figure (5) is presented using a log scale for time.

5. CONCLUSIONS

In this article, modeling aspects of dynamic flash-drum
systems were explored using a non-equilibrium physics-
based model. The description presented considers trans-
port phenomena formulations and conservation principles
and leads to a nonlinear DAE system. The proposed dy-
namic model describes the evolution of liquid and vapor
phases as separated sub-systems interconnected through
an interface. The introduction of the interface exchange
rates in the model predicts phase collapse for systems
that operate consistently far from equilibrium. Moreover,
the model presented can be easily extended to describe
liquid-liquid or liquid-solid multiphase systems far from
equilibrium. The obtained DAE system is shown to be of
index one for a methanol-water mixture. Numerical evi-
dence shows that the linearized system has positive eigen-
values for a non-isobaric operation regime. For the isobaric
case, trajectories appear stable in simulations; however,
numerical error in the linearization eigenvalues would lead
us to conclude otherwise. Developing a complete nonlinear
stability analysis approach for the DAE model developed
here is therefore required and will be addressed in future
research. A thermodynamic-based dissipativity approach,
following (Willems, 1972; Alonso and Ydstie, 1996) will
be considered to get an input-output perspective on the
problem of multiphase chemical systems.
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