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Abstract: A passivity-based input observer is proposed. The problem is motivated by reaction
rate and heat estimation in control of chemical reaction systems. The input observer assumes
measurement of the output, and its first order time derivative. The observer gives asymptotically
converging estimation when both are accurately available, the so-called ideal case. In the
nonideal case, where the derivative is not available, differentiators can be used to reconstruct
the derivative with some error. Simulation results show performance results using a deadbeat
differentiator for derivative reconstruction.
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1. INTRODUCTION

The determination of the input to a system is usually
considered to be a control problem. In order to achieve
perfect tracking of a given time-varying reference, it is
necessary that the system is stably invertible (passive)
and that the time derivative of the reference is known
and Lipschitz continuous. In the current paper, we apply
this same idea to estimation of an unknown time-varying
input parameter. In this case, the measurement assumes
the role of the reference and the unknown parameters the
role of the control variable. To achieve perfect estimation,
the conditions are that the reference and the derivative
are measured and Lipschitz continuous. The problem is
relevant when we need to estimate some unknown part
of the inputs. Examples include the estimation of exerted
force in machine tools applications (Corless and Tu, 1998),
the magnitude of unknown maneuvers in tracking prob-
lems (Lee and Tahk, 1999), fault detection (Chen et al.,
1996). The proposed work is motivated by the estimation
problem in chemical reaction processes, more specifically
the estimation of reaction rates and reaction heat (Zhao
et al., 2016). The successful estimation of such variables is
helpful for process control and monitoring.

The input observer proposed by Park and Stein (1988)
includes an Unknown Input Observer (UIO), estimating
unknown states from output measurements. Differential
equations are inverted to obtain parameter estimates.
The output measurement derivatives are required in the
observer calculation. Due to the possibility that output
measurements could be corrupted with noise, and direct
differentiating noisy signal would exaggerate the noise in
the estimates, Corless and Tu (1998) propose an input
observer that applies to a smaller class of system with
constraints on how fast the varying inputs change. Their
approach avoids the differentiation of output measure-
ments.

The estimation of reaction heat and reaction rate is impor-
tant to on-line monitoring and control of chemical reaction
systems. A few works have been proposed to address this

estimation problem with the classical Linear Quadratic
Gaussian estimation method (Schuler and Schmidt, 1992),
an inversion-based estimator (Tatiraju and Soroush, 1998),
the high gain observer approach (Aguilar et al., 2002) or
the integral observer approach (Aguilar-López, 2003). In
this work, we propose a passivity-based input observer
that can be used to obtain the estimates using conser-
vation balances, and the approach avoids the difficulty of
modeling reaction kinetics.

Derivatives of process measurements provide useful infor-
mation for process monitoring and control (Preisig, 1988;
Preisig and Rippin, 1993). Fundamentally, as shown in
Levant (1998), perfect estimation is not possible, when
the analytical expression of the signal is not known. The
work shows that the Lipschitz constants of signal deriva-
tives is helpful to reduce the inaccuracy of reconstructed
derivatives. Levant (1998) also develops a robust and exact
differentiator of noisy signal based on the sliding mode
method.

Inclusion of measurement derivatives in the input observer
algorithms is controversial due to existence of approxima-
tion errors and exaggeration of noise during differentiating.
We propose to use derivative estimators producing decent
estimates before using the derivatives in input observer.
Mboup et al. (2007) propose the algebraic time-derivative
estimation method that calculates the derivative estimates
as linear combinations of finite time-integrations of the sig-
nal. Reger and Jouffroy (2009) derive the same result from
the standard linear system reconstructibility theory. The
Savitzky-Golay filter (Baedecker, 1985) for time deriva-
tive estimation assumes that the signal can be expressed
as a polynomial. The derivatives of the regressed poly-
nomial are estimated derivatives. Co and Ydstie (1990)
apply modulating function and fast Fourier transformation
method to estimate derivatives.

The paper is organized as follows. In Section 2 we in-
troduce the problem in chemical reaction control that
motivates the development of the proposed observer; in
Section 3, we develop the theory of proposed passivity-

Preprints, 10th IFAC International Symposium on
Advanced Control of Chemical Processes
Shenyang, Liaoning, China, July 25-27, 2018

Copyright © 2018 IFAC 821



based observer; example simulations are shown in Section
4, and in Section 5, we complete the paper with summaries
and conclusions.

2. PROBLEM STATEMENT AND MOTIVATION

We have a system described by following state space
model:

dz

dt
= p(z, x) + φ(z, u), (1)

dx

dt
= f(z, x) + g(x, u), (2)

y = z + v. (3)

z ∈ Rp refers to measured states, x ∈ Rm refers to un-
measured states. We are interested in estimating p(x, z) :
Rp+m → Rp, which is a vector of C1 functions. v ∈ Rp is
the noise vector. In this paper, we assume the noise to be
absent.

In a chemical reaction system context, φ(z, u) represents
the supply function, assumed to be known or measured and
does not have recursive dependency on the higher order
dynamics, (2). p(x, z) represents the production function,
that couples the dynamics of the measured states z with
unmeasured x. The estimation of this time-varying term
p(x, z) is useful to compensate in feedback control, indicate
of reaction stage, and provide history of reaction evolution.
To further explain the problem, we use following chemical
semi-batch reaction example.

Semi-batch reactor example Assume that we have a semi-
batch reaction system with only one reaction A+B → C.
The dynamics of the reaction can be modeled as:

dCA
dt

=
Fin
V
CA,in − r, (4)

dCB
dt

=
Fin
V
CB,in − r, (5)

dCC
dt

= r, (6)

r = k0e
−Ea
RTr CACB , (7)

dTr
dt

=
Fin
V ρCp

(ρinCp,inTin − ρCpTr)−
∆Hrr

Cpρ

− UA(Tr − Tj)
V ρCp

, (8)

dV

dt
= Fin − Fout. (9)

We can measure the concentration of A, so that:

y = CA, (10)

and want to estimate the reaction rate r.

The conventional way of estimation solves the algebraic-
differential equations, (4) - (9), and use a regression, for
example a Kalman filter, to match the model to the
measurements. Another way is to just use the differential
equation of measured CA, (4). By comparing (4) and
(1), we assume to know the inlet flow information φ =
Fin

V CA,in. The task is to estimate the reaction production
term p(CA, CB , Tr, V ) = r(t).

Obviously, following the conventional approach increases
the size of modeling space, or requires more measurements.

Thus, we ask the question: can we just use (4) and
measured CA to achieve the estimation of r(t)? The
solution of the question would benefit us from mainly two
aspects:

(1) it saves the work of modeling the rest of the system;
(2) it frees the estimation task from knowing the reaction

kinetics.

The solution seems obvious at the first glance. One would
think we can compute or measure dCA

dt , and then calcu-
late reaction rate r algebraically from (4). The obstacles
preventing us from achieving that are the following:

(1) without having the analytical expression of CA, exact
differentiation to get dCA

dt is not possible;
(2) if the measurements of CA is corrupted with noise,

differentiation will further exaggerate the noise in the
derivatives.

The two obstacles lead us to ask for a better solution that
can dampen the noise translated into the estimates of r(t).

Above all, considering only (4), and assuming FinCA,in is
known, we can measure:

y1 = CA, (11)

y2 =
dCA
dt

, (12)

but the derivative measurement could be corrupted with
some noise. We want to estimate the time-varying produc-
tion term p(z, x) = r(t).

3. PASSIVITY-BASED INPUT OBSERVER

3.1 Ideal case

We start with a scalar, first order linear system:

ż(t) = az(t) + bµ(z, t), a < 0, (13a)

y1(t) = z(t), (13b)

y2(t) = ż(t). (13c)

The system has two outputs. i.e. measured state and its
time derivative. The task is to estimate the time-varying
parameter µ(t). Motivated by solving the estimation prob-
lem as a control problem, we “manipulate” the estimated
input µ(t) so that the estimation error of the state from
the observer model (14) asymptotically declines to zero.
Using Lyapunov function, V (z̃) = 1

2 (z − ẑ)2, we derive
the following passivity-based input observer to solve the
problem:

˙̂z(t) = aẑ(t) + bµ̂(t), (14)

µ̂(t) =
1

b
(k (y1(t)− ẑ(t)) + y2(t)− aẑ(t)) , k > 0,

(15)

where k is the proportional gain. From here, we drop the
dependence of time in the notations for convenience.

Theorem 1. Given system (13a), with unknown time-
varying parameter µ(t), state and time derivative mea-
surements (13b), (13c). The passivity-based observer, (14)
and (15), provides asymptotic estimates of unknown pa-
rameter.

Proof. By taking the time derivative of the update
law,(15), we have:

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

822



˙̂µ =
a+ k

b
(ż − ˙̂z) + µ̇ (16)

Now, subtract the expression of the true time derivative
of µ:

µ̇ =
1

b
(z̈ − aż), (17)

from (16) to give:

µ̇− ˙̂µ=−a+ k

b
(ż − ˙̂z) (18a)

=
(a+ k)k

b
(z − ẑ). (18b)

The application of Lyapunov function V (z̃) = 1
2 (z− ẑ)2 =

z̃2 guarantees z− ẑ converges zero. It is then obvious that
µ̇− ˙̂µ converges to zero, too. The asymptotic equilibrium
point of µ− µ̂ can be found by further exploring (18a). By

substituting ż and ˙̂z with their dynamics (13a) and (14),
we get:

µ̇− ˙̂µ = −a+ k

b
[a(z − ẑ) + b(µ− µ̂)] . (19)

According to previous analysis, at equilibrium,

µ̇− ˙̂µ = 0, ż − ˙̂z = 0, (20)

forcing µ− µ̂→ 0 asymptotically. �

Appendix A shows the application to the nonlinear system,
(1) and (2).

3.2 Non-ideal case

In practice, it may not be possible to obtain accurate mea-
surements of the derivatives. To study the effect of error
in differentiation, we rewrite the model in the following
manner:

ż(t) = az + bµ(z, t), a < 0, (21a)

y1 = z(t), (21b)

y2 = ż(t) + δ(t). (21c)

In this case, we do not measure the exact derivative,
thus the second output y2 is composed of the true time
derivative of the state plus a noise term, δ(t). The noise
term could result from the use of a numerical differentiator,
such as the deadbeat method of Reger and Jouffroy (2009).
The following result derives the frequency response of the
estimated error with respect to the noise term.

Theorem 2. Given system (21a), with time-varying pa-
rameter µ(t), we assume that state is perfectly measured,
(21b), but derivative measurement is corrupted with noise,
(21c). Assume that we can model the noise as δ(t) = δ0 +
Aδ sin(ωδt+φδ). The observer (14) - (15) provides param-
eter estimates with bounded error µ̃(t) as t→ +∞:

µ̃(t→ +∞)

=
a

bk
δ0 +

(
√

(a2 + ω2
δ )k2 + a2ω2

δ + ω4
δsin(ωδt+ φ′δ)

b(k2 + ω2
δ )

Aδ.

(22)

Proof. First we differentiate µ̃ and z̃, combining the
results with equations (14) and (15), then we can obtain
following relationships:

˙̃z = −kz̃ − δ, (23a)

˙̃µ =
(a+ k)k

b
z̃ +

a+ k

b
δ − 1

b
δ̇, (23b)

µ̃ = −a+ k

b
z̃ − 1

b
δ. (23c)

The solution to (23a) and (23b) are:

z̃(t) = e−ktz̃0 − e−kt
∫ t

0

ekτδ(τ)dτ, (24)

µ̃(t) = −a+ k

b
e−ktz̃0 +

a+ k

b
e−kt

∫ t

0

ekτδ(t)dτ

− 1

b
δ(t). (25)

The noise δ(t) in the derivative is modeled as:

δ(t) = δ0 +Aδ sin(ωδt+ φδ), (26)

which can be plugged in the solutions, and for z̃(t) we
have:

z̃(t) = e−ktz̃0 − e−kt
∫ t

0

ekτδ(τ)dτ

= e−kt
(
z̃0 +

ωδ cos(φδ)− k sin(φδ)

k2 + ω2
− 1

k

)
+
Aδ (k sin(ωδt+ φδ)− ωδ cos(ωδt+ φδ))

k2 + ω2
δ

+
δ0
k

= e−kt
(
z̃0 +

ωδ cos(φδ)− k sin(φδ)

k2 + ω2
− 1

k

)
+Aδ

√
k2 + ω2

δ sin(ωδt+ φ′′δ )

k2 + ω2
δ

+
δ0
k
, (27)

where

φ′′δ = φδ + arctan(−ωδ
k

). (28)

In (27), except for the exponential decaying term, the
magnitude of the periodic signal amplitude and modeled
average are both dampened by the observer gain k. For µ̃,
we have:

µ̃(t)

=
a+ k

b
e−kt

(
−z̃0 +

ωδ cos(φδ)− k sin(φδ)

k2 + ω2
δ

− 1

k

)
+
a+ k

bk
δ0 −

1

b
(δ0 +Aδ sin(ωδt+ φδ))

+
a+ k

b

Aδ (k sin(ωδt+ φδ)− ωδ cos(ωδt+ φδ))

k2 + ω2
δ

=
a+ k

b
e−kt

(
−z̃0 +

ωδ cos(φδ)− k sin(φδ)

k2 + ω2
δ

− 1

k

)
+

a

bk
δ0 +

√
(a2 + ω2

δ )k2 + a2ω2
δ + ω4 sin(ωδt+ φ′δ)

b(k2 + ω2
δ )

Aδ,

(29)

where

φ′δ = φδ + arctan

(
−(a+ k)ωδ
ak − ω2

δ

)
. (30)

Similar situation with (29), the not exponential decaying
terms can be dampened by large observer gain. �

The derivation above shows how the magnitude |µ̃∞|
change as a function of the noise parameter, and it is
summarized as follows:
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|µ̃∞| = |
a

bk
δ0|, as Aδ = 0 or ωδ = 0;

|µ̃∞| → |
Aδ
b
|, as ωδ →∞.

The dampening effect of observer in the estimates of the
derivative noise can be shown through a Bode diagram. We
first derive the transfer function relations between z̃(t) vs.
δ(t) and µ̃(t) vs. δ(t). From (23a) and (23b), the transfer
functions of these two pairs of outputs and inputs are:

G1(s) =
z̃(s)

δ(s)
= − 1

s+ k
(31)

G2(s) =
µ̃(s)

δ(s)
= − s(s− a)

bs(s+ k)
(32)

Assume a = −1, b = 1. The Bode diagrams of G1(s)
and G2(s) are shown in Figures 1 and 2, respectively.
Responses of high gain observer, k = 10, and low gain
observer , k = 2, are compared. The error bound can
be reduced by increasing the observer gain k while the
noise frequency is small. As shown in both magnitude
diagrams of G1(s) and G(s), the noise δ is much more
dampened in z̃ and µ̃ by the high gain observer than low
gain observer while the noise frequency is small. As the
frequency increases, the differences between using high
gain and low gain grows smaller. However, from Figure
2, we can see the observer is not able to dampen the noise
in µ̃ when noise frequency is very high.

4. SIMULATION RESULTS

A simple scalar linear system with one varying parameter
is used to test the developed passivity-based observer:

ż(t) = −z(t) + µ(t), (33a)

µ(t) = 0.1 sin(0.5t), (33b)

y1(t) = z(t), (33c)

y2(t) = żd(t), (33d)

where żd is an estimate of the derivative of z.

Ideal case (żd = ż) Both the state and derivative is
measured continuously and accurately, more specifically
żd = ż. (14) and (15) are used to estimate the parameter
µ(t). The results of the estimation are shown in Figures 3
and 4. We also compare the passivity based input observer
(PBIO) result with inversion based (IBO) (Tatiraju and
Soroush, 1998) result. The inversion based observer also
treats the time-varying parameter estimation problem, but
does not use information of deriavtive of measurement in
the estimation equation (15). Figure (3a) shows that the
observers starts with the same wrong initial condition,
which also results in the deviation of the estimated pa-
rameter, µ̂ from the true value, Figure (4a). Because of
the asymptotic stability of PBIO observer, the PBIO es-
timation errors converge asymptotically to zero in Figures
(3b) and (4b) as shown in Theorem 1. In comparison, the
IBO is shown to be marginal stable, due to fail to capture
the dynamic change of the measurement.

Nonideal case (żd = ż + δ) Again, we consider the
example: (33a) - (33d). The difference from the ideal case

x

Fig. 1. Bode diagram of G1(s) = z̃(s)
δ(s)

Fig. 2. Bode diagram of G2(s) = µ̃(s)
δ(s)

is the second output y2(t) is calculated by using deadbeat
differentiator,

żd(t) = ż(t) + δ(t), (34)

where δ(t) is the differentiation error. Any type of differen-
tiator would cause error in the reconstructed derivatives.
Here, we pick the deadbeat differentiation technique pro-
posed by Reger and Jouffroy (2009) as an example. The
work re-derives the derivative estimation scheme in Mboup
et al. (2007) based on the reconstructibility Gramian.
Deadbeat differentiation treats the signal as a polynomial
signal of time within the differentiation moving horizon T ,
here 0.1, and the signal z(t) is a degree-one polynomial.
First order derivative can be reconstructed using following
formula from the paper:

żd(t) =
6

T 2

∫ t

t−T
z(τ)dτ +

12

T 3

∫ t

t−T
(τ − t)z(τ)dτ, (35)

The assumption of a degree-one polynomial is required to
derive the weighting factors of the integration terms.

The proposed passivity-based observer (14) - (15) with
proportional gain k = 10 is used. The simulation results
are shown in Figure 6. The observer starts with a wrong
initial condition with an error of 0.1 as shown in Figure
(5a), then converge close to the true profile. The same
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;

(a) Profiles of z and ẑ (k = 2)

(b) Profiles of z̃ (k = 2)

Fig. 3. Observer performance in ideal case (z and z̃)

performance can be found for the parameter estimate in
Figure (5b). The estimation error of µ though very small,
but still exists in Figure (6b). However, we can see that
the magnitude of µ error is very much dampen by the
observer, compared with the magnitude of the differentia-
tor estimated derivative error. Also, in this figure, we can
observer the magnitudes of noise reduction with different
k. As shown in the theory, with higher k, the bounds of
estimation error are smaller.

5. CONCLUSIONS

In this work, we developed a passivity-based input ob-
server for scalar linear system with a time-varying pa-
rameter to be estimated. The observer is derived from
Lyapunov stability perspective, and requires the use of
a measured or estimated output derivative. In the ideal
case, the derivative is perfectly measured, and the observer
estimates have asymptotic convergence to the true val-
ues. In the nonideal case, the derivative is not perfectly
measured. Instead it is obtained through a differentiation
technique, such as a deadbeat differentiator. We showed
that the proposed observer could dampen the magnitude
of the derivative error in the parameter estimates by using
large observer gain. Illustrative examples are simulated
to show the proposed observer performance for ideal and
nonideal cases. Potential applications include production
estimation in chemical reaction systems for process control
and monitor. Inclusion of the proposed observer in a model

(a) Profiles of µ and µ̂ (k = 2)

(b) Profiles of µ̃ (k = 2)

Fig. 4. Observer performance in ideal case(µ and µ̃)

based control scheme can reduce control model size and
save modeling cost.
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(a) Profiles of ż and żd (k = 10)

(b) Profiles of δ and µ̃

Fig. 6. Observer performance in nonideal case (ż and µ̃)
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Appendix A. OBSERVER OF NONLINEAR SYSTEMS

The observer can be used for the nonlinear system:

dz

dt
= p(z, x) + φ(z, u), (A.1)

dx

dt
= f(z, x) + g(x, u), (A.2)

y1 = z, (A.3)

y2 = ż, (A.4)

when z ∈ Rp, are measured states, and x ∈ Rm are
unmeasured states.p : Rp+m → Rp are a vector of C1

functions. In this case, the observer is

dẑ

dt
= p̂(t) + φ(ẑ, u), (A.5)

p̂(t) = y2 +K(y1 − ẑ)− φ(ẑ, u). (A.6)

K ∈ diag(k1, k2, k3, ..., kp) is positive definite.
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