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Abstract: In this work, the application of a reliable iterative real-time optimization (RTO)
scheme to a continuously operated transition metal complex catalyzed process for the hy-
droformylation of 1-dodecene is presented. The aim of the proposed scheme is to ensure
optimal operation despite the presence of model uncertainties and measurement errors. Iterative
optimization using Modifier Adaptation with Quadratic Approximation (MAWQA) is applied.
Furthermore, additional modules for steady-state identification (SSI) and robust data reconcil-
iation (DR) were designed and implemented. The proposed scheme was commissioned in a real
miniplant, and a significantly improved performance in comparison to the optimal operating
point that was obtained from the nominal process model was achieved.
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1. INTRODUCTION

The study of transition metal complex catalysis is one of
the most active research fields in industrial chemistry due
to the insurmountable high selectivity and activity that
can be attained at mild reaction conditions in comparison
to the heterogeneous counterpart. Furthermore, due to
the minimization of waste and saving of energy, transition
metal complex catalysis has been identified as one of the
key technologies in green chemistry, whose relevance is
illustrated by the fact that during the last two decades,
three Nobel prizes in chemistry (2001, 2005, 2010) have
been awarded to researchers working in this field (Behr
and Neubert, 2012). However, commercial applications
of transition metal complex catalysis are still relatively
limited, which can be mainly explained by the high prices
of the required metals and ligands. This leads to the need
for highly efficient catalyst recovery concepts and a careful
selection of the operating conditions (Dreimann et al.,
2016).

The traditional way to address the economically optimal
operation of chemical process has been the use of Real-
time Optimization. The idea is to make use of a stationary
(usually first principles based) nonlinear model of the
process in order to compute the set-points that maximize
the economic performance of the plant while different
environmental, safety and process constraints are satisfied.
In the conventional two-step approach, the available plant
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measurements are used to update a subset of the model
parameters with the aim of operating the process as close
as possible to the actual optimum. Unfortunately, there are
numerous limitations to this approach including the proper
selection of the parameters to be updated, their identifi-
ability and the fact that under the presence of structural
plant-model mismatch, convergence to the actual optimum
cannot be ensured or even worse it might steer the process
to an operating point where the constraints are violated
(Chachuat et al., 2009).

In order to address the issue of structural plant-model
mismatch and to overcome the aforementioned difficulties
of online parameters estimation, the addition of bias and
gradient correction terms to the nominal optimization
problem has been proposed in the so-called Modifier Adap-
tation (MA) framework (Tatjewski, 2002; Gao and Engell,
2005; Marchetti et al., 2016). The methodology has been
widely investigated during the last years due to its ability
to converge to the plant optimum under relatively mild
assumptions regarding the quality of the available process
model. The main challenge during the implementation of
MA is the accurate estimation of the plant gradients. The
use of finite difference was proposed in the seminal work
of Roberts (Roberts, 1979), which limits the application
of the method to low-dimensional problems with low noise
levels. During the last few years, different approaches have
been proposed in order to address the issue of accurate
estimation of the plant gradients, including dual modifier
adaptation (Dual-MA) (Marchetti et al., 2010), Nested
Modifier Adaptation (Navia et al., 2015), and the use of
quadratic surrogate models in Modifier Adaptation with
quadratic Approximation (MAWQA) (Gao et al., 2016b).
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Fig. 1. Reaction network for the case study hydroformyla-
tion of 1-Dodecene in a TMS system

In this work, a RTO scheme was developed and tested on
miniplant scale for a transition metal complex catalyzed
process. In order to deal with plant-model mismatch, a
reliable iterative optimization scheme based on MAWQA
was designed. Furthermore, additional modules to handle
measurements errors were developed.

2. CASE STUDY: HYDROFORMYLATION OF
1-DODECENE IN A TMS SYSTEM

2.1 Process Description

Hydroformylation is one of the best known applications of
transition metal catalysis used in industry on a large scale
for the production of aldehydes by reaction of alkenes with
syngas (CO/H2) (Behr and Neubert, 2012). It has been
widely studied as a model reaction due to its similarities
to other processes such us hydroesterification, hydrocar-
bonylation, hydroaminomethylation and hydrosilylation.
Furthermore, hydroformylation has been proposed as a key
step for the functionalization and processing of renewable
raw materials as e.g. fatty oils.

The reaction takes place in the presence of a rhodium
complex that is produced by the reaction of the precursor
(acetylacetonato) - dicarbonylrhodium(I) Rh(acac)(CO)2
and the ligand BiPhePhos. The reaction network is pre-
sented in Figure 1. Besides the main reaction i.e. the
hydroformylation of 1-dodecene to tridecanal, several side-
reactions take place, leading to the formation of differ-
ent side products: isomers of 1-dodecene (lumped as iso-
dodecene), branched aldehydes (b-aldehyde) and isomers
of dodecane. In order to ensure an efficient recovery of the
expensive catalyst, the reaction takes place in a thermoreg-
ulated multicomponent solvent (TMS) system. A careful
selection of a non-polar and a polar solvent ensures a single
liquid phase at reaction conditions, while after cooling
down the reaction mixture, the non-polar product phase is
separated from the catalyst rich polar phase which can be
recycled to the reactor. In the case of the hydroformylation
of 1-Dodecene, the TMS system 50/50, %m/%m mixture
of the non-polar solvent n-decane and the polar solvent
N,N-Dymethylformamide (DMF) has been proposed. It
has been shown that this system yields high conversion
and selectivity with low catalyst leaching (Brunsch and
Behr, 2013).

The process concept has been successfully demonstrated
on miniplant scale (Zagajewski et al., 2014). In Figure 2, a
simplified flow diagram of the miniplant is presented. The
substrate 1-dodecene is fed together with the non-polar
solvent n-Decane (vessel B1 via P1) and the polar solvent
DMF (vessel B2 via P2) to the reactor B3. Dissolved

Fig. 2. Simplified flowsheet of the miniplant used as case
study in this work

catalyst B2 is also replenished to the system. The reactor
B3 consists of a 1000 ml vessel with a constant liquid
holdup of 300 ml. A constant temperature is kept in
the reactor by heat exchange with the jacket. Carbon
monoxide and hydrogen are fed to the reactor B3 under
pressure and ratio control. After leaving B3, heat is
removed from the reaction mixture in the heat exchanger
WT1. In the decanter B4, the non-polar (product) and
the polar (catalyst) phases are separated. The catalyst
phase is pumped back to the reactor via pump P3 while
the product phase is sent to further processing. The
product is analyzed online by gas chromatography (GC)
by sampling the non-polar phase in B4.

2.2 Model Description

In this section a brief description of the process model is
given. Further details can be found in previous works (Her-
nandez and Engell, 2016; Gao et al., 2016a). According to
the material balance, the amounts (in mol) of the different
liquid components ni,liquid (i = n-dodecene, tridecanal,
dodecane, etc) in the reactor liquid phase are given by (1):

dni,liquid
dt

= 0 = ṅi,in − ṅi,out +Mcat

Nl∑
l=1

νi,lrl, (1)

where Mcat is the mass of active catalyst in the reactor
and ṅi,in, ṅi,out are molar inflow and outflow rate of the
component i. νi,l are the coefficients of the stoichiometric
matrix for the liquid component i and rl is the reaction
rate for the l reaction. For hydrogen and carbon monoxide,
the material balance (1) is extended to include the molar
flux Jj of the gas component j from the gas phase to the
liquid phase:

dnj,liquid
dt

= 0 = JjaVR,liquid− ṅj,out+Mcat

Nl∑
l=1

νj,lrl, (2)

where a is the G-L interfacial area per unit volume. The
two-film theory is used for the description of the mass
transfer in the G-L interface. After introducing the overall
mass transfer coefficients (kj,G) based on the difference
between the bulk concentration in one phase Cbulk

j,liquid and

the concentration that would be in equilibrium (Ceq
j,liquid)

with the bulk concentration in the other phase, the flux is
computed as:

Jj = kj,G

(
Ceq
j,liquid − C

bulk
j,liquid

)
, (3)

with the equilibrium concentration given by:
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Ceq
j,liquid =

1
RTReactor

VR,gas

VR,liquid
pj + Cbulk

j,liquid

1
RTReactor

VR,gas

VR,liquid
Hj + 1

, (4)

where Hj is the Henry coefficient. Further details regard-
ing the kinetic model (expression of the reaction rate rl)
can be found in (Kiedorf et al., 2014), (Hentschel et al.,
2015). It is assumed that the LLE between the phases is
reached in the decanter. Based on experimental values,
simple expressions of the equilibrium constants Ki as
functions of the decanter temperature for all the liquid
components i were obtained:

Ki = exp

(
Ai,0 +

Ai,1
Tdecanter

+Ai,2Tdecanter

)
, (5)

where Ai,0, Ai,1 and Ai,2 are parameters obtained by
regression of experimental data. The split factor ζi and
the molar flows of the components in the product stream
(ṅi,product) and of the catalyst stream (ṅi,catalyst) as a
function of the inlet flow to the decanter (ṅi,decanter) can
be computed by:

ṅi,product = ζini,decanter; (6a)

ṅi,catalyst = (1− ζi) ṅi,decanter ζi =
Ki

1 +Ki
. (6b)

As was stated in equation (1) the reaction rate is pro-
portional to the mass of the active catalyst Mcat =
CcatVR,liquid. At high carbon monoxide concetrations, cat-
alyst deactivation can take place by formation of inac-
tive species as Rh-di-carbonyl and Rh-dimer. This phe-
nomenon has been approximately quantified by Hentschel
et al. (2015) according to:

Ccat =
Cbulk
Rh−precursor,liquid

1 +Kcat,1Cbulk
CO,liquid +Kcat,2

Cbulk
CO,liquid

Cbulk
H2,liquid

. (7)

The active catalyst concentration Ccat is expressed as a
function of the Rh-precursor concentration CRh−precursor
and the CO and H2 concentrations in the liquid phase.
The constants Kcat,1 and Kcat,2 account for uncertainty
in the catalyst pre-equilibrium. The product composition
predicted by the model was compared to experimental
data and a root-mean-square error of 2.47 % was observed.

3. PROPOSED OPTIMIZATION SCHEME

A simplified block diagram of the proposed RTO scheme
is shown in figure 3. It is similar to the typical struc-
ture used in commercial RTO systems based on the two-
step approach (Camara et al., 2016). However, instead
of including a parameter estimation step, the model un-
certainties are addressed via Modifier Adaptation with
Quadratic Approximation. Moreover, steady-state identi-
fication (SSI) and robust data reconciliation (DR) blocks
have been implemented in order to provide robustness un-
der measurements errors. The execution of the RTO layer
can be triggered when a steady-state has been detected
based on the raw data (GC analysis, temperature, flow
rates, pressure). The raw data is processed by the DR
module and used to estimate the objective function that
is used by the iterative optimization algorithm. Finally,
the iterative optimization module computes the set points
that are implemented by the regulatory control layer.

Fig. 3. Block diagram of the proposed RTO scheme

The miniplant is connected to a control computer that
runs a LabVIEW application. A sample of the product in
the decanter is taken automatically by the GC analyzer.
The signal is sent to a second computer where the raw
data is processed to estimate the current product compo-
sition. A TCP/IP protocol suite was chosen to realize the
communication between the system components.

3.1 Steady State Identification

A F -statistical test is used in order to perform an auto-
matic identification of a steady state. The basic idea is to
compare the variance of the raw data with the variance
obtained from the filtered data at each sampling point
(Cao and Russell, 1995). As a result, a fast detection of
stationary it is obtained. Despite its simplicity, relatively
good accuracy of the detection of steady states has been
reported in different works. After defining the filter con-
stants 0 < λ1, λ2, λ3 < 1 The raw data yi is analyzed
according to:

• Step 1: yi is filtered (yi,f ) by using an exponential
moving average filter yi,f = λ1y

i + (1− λ1)yi−1,f

• Step 2: The filtered square deviation (vi,f )2 is cal-
culated according to:

(vi,f )2 = λ2(yi − yi−1,f )2 + (1− λ2)(vi−1,f )2

• Step 3: The filtered square difference (di,f )2 of
successive data is computed by:

(di,f )2 = λ3(yi − yi−1)2 + (1− λ3)(di−1,f )2

• Step 4: Finally, the R statistic defined by the ratio
between the previously calculated variances R =
(2−λ1)(v

f,i)2

(df,i)2
is evaluated.

The obtained value of R is compared with a critical value
Rcrit. If R > Rcrit then the process is considered not to be
at steady state at the corresponding level of significance.
In our case study, the composition measurements from the
GC (mass fraction wi) are used to identify the stationarity
of the complete process.

3.2 Robust Data Reconciliation

Due to the presence of noise and gross errors in the
collected data, the material balance in the miniplant might
not be satisfied. In order to overcome this issue, a Data
Reconciliation (DR) module was designed. The basic idea
is to adjust the collected data in such a way that the
reconciled values satisfy the material balance. Specifically,
for our case study, the material balances of the polar
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and the non-polar solvent must be satisfied at steady
state. Furthermore, despite the assumption that there are
uncertainties in the kinetic model, the total molar inflow of
the substrate to the miniplant should the same as the sum
of the molar outflow of the different species that take part
in the reaction network. The DR problem for the Miniplant
is formulated as:

max
d

∑
ρ(ξi)

s.t:. ṁDMF,1 = ṁDMF,3;

ṁn−Decane,1 = ṁn−Decane,3
ṅ1−Dodecene,1 = ṅ1−Dodecene,3 + ṅIso−Dodecene,3...

+ ṅtridecanal,3 + ṅb−Aldehyde,3 + ṅdodecane,3,
(8)

where ξi = wi − ŵi is the estimation error. The decision
variables d of the problem are the reconciled mass flow of
the pumps P1 and P2 and the reconciled mass fractions
(ŵi) in the product streams. For a robust estimation
in case of outliers, the traditional least square objective
function was replaced by a Welsch estimator defined by:

ρ(ξi, cw) =
c2w
2

(
1− exp

(
−
(
ξi
cw

)2
))

(9)

with tuning parameter cw. A value of cw = 2.9846 is
used to obtain 95% asymptotic efficiency on the standard
distribution (Korpela et al., 2016).

3.3 Modifier Adaptation with Quadratic Approximation

The nominal optimization problem can be stated as:

min
u

Jm(u)

s.t. Cm(u) ≤ 0

ulb ≤ u ≤ uub,

(10)

where u ∈ Rnu is a vector of manipulated plant in-
puts bounded by ulb and uub, Jp(u) : Rnu → R is a
scalar objective function (economic performance index),
and Cp(u) : Rnu → Rnc is the vector of plant constraints
and model equations; the objective function and the con-
straints are assumed to be twice differentiable. To deal
with plant-model mismatch, MA introduces bias and gra-
dients correction terms (modifiers) to (10), which results
in a problem that is solved iteratively (Gao and Engell,
2005):

min
u

J
(k)
ad (u) := Jm(u) + ε

(k)
J + λ

(k)
J

(
u− u(k)

)
s.t. C

(k)
ad (u) := Cm(u) + ε

(k)
C + λ

(k)
C

(
u− u(k)

)
≤ 0

ulb ≤ u ≤ uub,
(11)

with the superscript k denoting the iteration number. The
bias is corrected by the zeroth-order modifiers ε, and the
gradient correction is done by the first-order modifiers λ:

ε
(k)
J = J (k)

p − J (k)
m ; ε

(k)
C = C(k)

p −C(k)
m

λ
(k)
J =

(
∇J (k)

p −∇J (k)
m

)T
;λ

(k)
C =

(
∇C(k)

p −∇C(k)
m

)T
,

(12)
where the subscripts p and m denote the plant and the
model.

As stated before, the main challenge is the estimation
of the plant gradients. In this work Modifier Adaptation

with Quadratic Approximation (MAWQA) is used as a
key element in the proposed robust RTO scheme. The
idea behind of the algorithm is the estimation of the plant
gradients by fitting a quadratic model to the data that was
obtained at previous set-points. This is illustrated below
for the objective function, the same procedure is applied
for the approximation of the constraints. The quadratic
approximation of the cost function is defined by:

Jφ(u,θ) =

nu∑
i=1

i∑
j=1

ai,juiuj +

nu∑
i=1

biui + c, (13)

with the parameter set θ = {a1,1, · · · , anu,nu
, b1, · · · , bnu

, c}
obtained from solving the least-squares problem:

min
θ

nr∑
i=1

(
Jp

(
u(ri)

)
− Jφ

(
u(ri),θ

))2
, (14)

where u(ri) are the elements of the regression set U (k)

composed of past set-points selected to guarantee well-

poisedness of problem. The regression set U (k) = U (k)
nb ∪

U (k)
dist include the set of points within the neighborhood of

the current iteration U (k)
nb (i.e. within a ball of predefined

size) and the set of distant distant points U (k)
dist according

to:

min
U(k)

dist

∑∥∥u− u(k)
∥∥

φ
(
U (k)
dist

)
s.t. size(U (k)

dist) = (nu + 1)(nu + 2)/2− 1

(15)

where φ
(
U (k)
dist

)
is the minimal angle between all the

possible pair of vectors of the regression set. After the

quadratic model has been built, it is assumed that∇J (k)
p ≈

∇J (k)
φ , based on the fact that the quadratic model locally

captures first and second order information of the actual
(unknown) plat map. Due to the restricted (local) validity
of the previous approximation, the new set-point obtained
from the iteration on (15) is constrained to be within
a trust-region that can be adapted after each iteration
(‖u(k+1) − u(k)‖ ≤ ∆(k)). The rate of convergence is
affected by the value of the initial perturbations and
the size of the trust region. The optimal values of those
parameters which increase the rate of convergence are not
known a priori but can be tunned by using simulations.

Furthermore, the strategy proposed by Gao et al. (2016b)
includes the possibility of directly using the quadratic
approximation instead of the modified problem according
to the prediction accuracies of the models. A detailed
description of the algorithm can be found in (Gao et al.,
2016b).

4. PROBLEM FORMULATION

The RTO problem is formulated as the maximization of
the product yield (Ytridecanal), subject to the model equa-
tions, input bounds and process constraints, represented
by the map C(u).

max
u

J = Ytridecanal(u)

s.t. C(u) ≤ 0

ulb ≤ u ≤ uub.

(16)
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Fig. 4. Performance of the steady state identification
algorithm with real plant data

As degrees of freedom (u), the set-points of the following
controlled variables are considered: reactor temperature
(85◦C ≤ TReactor ≤ 105◦C), reactor pressure (10bar ≤
PReactor ≤ 30bar), molar fraction of carbon monoxide in
feed gas (0.1 ≤ yCO ≤ 0.9), catalyst dosing (0.1ppm ≤
ṅcatalyst,in ≤ 4ppm) and decanter temperature (5◦C ≤
Tdecanter ≤ 15◦C).

5. RESULTS

Due to space limitation, the scope of this paper is re-
stricted to the validation of the scheme. The reader is
referred to previous works involving simulation studies
(Hernandez and Engell, 2016), (Gao et al., 2016a).

5.1 Steady State Identification

Historical data from miniplant experiments were used to
validate the algorithm. Figure 4 displays the results of
the SSI algortihm for data collected during the start-up
of the miniplant with parameters λ1 = 0.70, λ2 = 0.95,
λ3 = 0.63 and Rcrit = 2.0 . In the primary vertical axis
(left), the raw and filtered data regarding the mass fraction
of tridecanal in the product phase is presented, while the
secondary axis (right) is used for indicating the state of
the system. A value of state=1 corresponds to the case
that the process is stationary while state=0 represents ta
transition state. As can be observed, the algorithm is able
to reliably distinguish between transients and stationary
states despite the simplicity of the proposed approach.

5.2 Robust Data Reconciliation

The DR scheme described in section 3.2 was also validated
with historical data. Table 1 illustrates the performance
of the approach by comparing the material balance before
and after data reconciliation for a particular stationary op-
erating point. As can be observed, a significant difference
between the raw data and the reconciled data is observed
for the flow of DMF. This can be associated to errors
during the calibration of the pump P2. Minor adjustments
are made to the composition measured by the GC. As a
result, a consistent material balance is obtained that is
used in the online computation of the objective function.

5.3 Iterative Set-Point Optimization

Preliminary simulation studies showed that for different
uncertainty scenarios, the decanter temperature is kept

Table 1. Material balance for the Miniplant

Component
Raw Flow [g/h] Rec. Flow [g/h]
Inlet Outlet Inlet Outlet

DMF 4.25 3.27 2.55 2.55
Decane 32.08 30.72 32.08 32.08
1-Dodecene 12.22 1.74 12.22 1.73
Iso-Dodecene 0 2.72 0 2.70
Dodecane 0 0.05 0 0
b-Aldehyde 0 0.38 0 0.37
Tridecanal 0 8.86 0 9.09

always at its minimum while the total pressure is kept at
the maximum value. This can be explained by the fact that
at a low temperature in the decanter the catalyst leaching
is minimized, while the increase of the pressure leads
to an increase in the reaction rate that can compensate
a lower catalyst concentration. Furthermore, changes in
the catalyst dosing lead to an extremely slow transition
between steady states, a problem that will be addressed
in another work. Therefore, in this work the problem is
simplified by considering only the molar fraction of carbon
monoxide in the feed gas and the reactor temperature as
decision variables in the iterative optimization scheme,
while the rest of the variables are kept at the optimum
that was computed by using the nominal model.

Figure 5 shows the trajectory of the yield of tridecanal
before and after implementation of the closed-loop RTO
scheme. As can be seen the algorithm generates a series
of inputs that lead to an improvement of the tridecanal
yield from 73.3% at the nominal optimum to a final value
of 76.6% after 40 hours, equivalent to 7 iterations. Figure
6 shows the trajectory of the manipulated variables, the
reactor temperature is adjusted from the initial value
of 95◦C to 105◦C while the molar fraction of CO is
adjusted from the original value of 0.50 to the final value of
0.68. The increase of temperature improves the selectivity
towards the desired product that can be explained by the
difference of the activation energies between the reactions.
On the other hand, the adjustment of the molar fraction
of CO affects the concentration of active catalyst in the
reaction medium as well as the concentration of CO in the
bulk liquid itself. It has been reported in previous works,
that the partial pressure of CO has a significant influence
on the performance of the reaction. A low partial pressure
leads to a lower concentration in the liquid phase with a
detrimental effect in the hydroformylation reactions, but
high partial pressure might lead to catalyst deactivation.
The influence of the new operating point on the yield
of the side products is displayed in Figure 7. As can be
seen, the final operating point leads to a higher rate of all
the hydroformylation reactions including the formation of
branched aldehyde.

6. CONCLUSIONS

In this work, an improved operation of a continuously
operated transition metal catalyzed hydroformylation pro-
cess has been achieved by means of a reliable Real-time
Optimization scheme which is able to handle model un-
certainty and measurement errors. The proposed scheme
has been validated in a miniplant for the model reac-
tion hydroformylation of 1-Dodecene in a thermoregulated
multicomponent (TMS) solvent system. Future work will
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Fig. 5. Trajectory of the yield of tridecanal before and after
application of the proposed RTO scheme

Fig. 6. Trajectory of the manipulated variables: reactor
temperature and molar fraction of CO in the gas feed.

Fig. 7. Yields of dodecane, b-aldehyde and iso-dodecene

incorporate recent developments on the use of transient
information for a faster convergence to the optimal oper-
ating point (Gao et al., 2017).
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