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Abstract: Optimized scheduling of compressor operation in compressed natural gas stations
can achieve significant reduction in the cost of electricity in time-of-use electricity tariff
environments. A model predictive control strategy for the scheduling of compressor activity
is presented in this paper. The strategy ensures a robust responsiveness to meeting potential
changes in gas demand patterns while at the same time minimizing electricity cost by a margin
of up to 53.87%.
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1. INTRODUCTION

In order to slow down the effects of climate change, reduce
energy dependency and improve air quality, the use of
vehicles powered by alternatives to fossil fuels has been
identified as an important strategy that will contribute
significantly to the aforementioned targets (Yeh (2007)).
However, global transportation is still largely dominated
by the internal combustion engine (ICE) given the ver-
satility that it offers in comparison with competing tech-
nologies (Lave and MacLean (2002)). In transitioning away
from fossil fuels, lower emission options such as compressed
natural gas (CNG) and liquid petroleum gas (LPG) have
been demonstrated as viable lower-emission replacements
for petrol and diesel for ICEs (Weaver (1989)). CNG has
been shown to provide the lowest green house gas emissions
as well as provide vehicle owners with the lowest total cost
of ownership among hydrocarbon fuels (Hesterberg et al.
(2008)). CNG has therefore been growing in its use globally
along with the CNG delivery infrastructure to end users
(Frick et al. (2007)).

The CNG fast-fill station is especially popular for road-
side CNG filling stations because it allows consumers to
refuel their vehicles within four to five minutes which is
comparable to filling times at diesel and petrol pumps
(Khadem et al. (2015)). CNG compression that has to
be done for vehicle fuelling incurs electricity costs which
contribute to the cost of delivery of gas to consumers.
CNG fuelling stations can benefit from considering energy
efficiency strategies from performance, operation, equip-
ment and technology standpoints (Xia and Zhang (2010);
Xia et al. (2012); Xia and Zhang (2015)). Higher energy
efficiency at the CNG station can help lower the cost of gas
delivery which translates to lower price of gas and therefore
increased attractiveness of CNG as a transportation fuel.

The study of the CNG fast-fill station has been significant
in literature starting with the initial modelling based on

the first law of thermodynamics by Kountz (1994). Subse-
quently, researchers improved on this model by considering
different components of the fast-fill station that interact
with the gas to give mathematical description of the CNG
station (Farzaneh-Gord (2008); Deymi-Dashtebayaz et al.
(2012); Khadem et al. (2015)). There are few studies deal-
ing with the interaction between CNG refuelling infras-
tructure and the electricity grid networks from which they
draw power to run the compressors (Bang et al. (2014)).
The current work presents an operation optimization strat-
egy for CNG fast-fill stations to achieve minimized cost of
electricity where electricity is purchased based on a time-
of-use (TOU) tariff. The TOU tariff is a demand response
(DR) strategy implemented by power utility providers in
order to influence consumer behaviour in their pattern
of electricity use, in response to differential pricing based
on time (Albadi and El-Saadany (2008); Nwulu and Xia
(2015); Wanjiru and Xia (2015)). DR programs achieve
financial benefits for the participants in the short term
while lowering aggregate system capacity requirements in
the long term as well as increasing grid reliability by
minimizing likelihood of forced outages (Setlhaolo et al.
(2014)). The model predictive control (MPC) strategy of a
CNG fast-fill station operation with an objective of lower-
ing station electricity cost is the novel contribution of this
paper. MPC approaches have been used for various process
optimization problems because of the ability to cope with
hard constraints and states as well as deal with possible
disturbances (Mayne et al. (2000); Wanjiru et al. (2016);
Mei and Xia (2017); Xia et al. (2011)). Economic MPC
work has been particularly popular in recent literature due
to demonstrable versatility in various process optimization
applications (Rawlings et al. (2017); Van Staden et al.
(2011)). This has been the case for applications involving
demand side energy management problems such as in the
current study (Wu et al. (2015); Zhang and Xia (2016)).
The present problem requires the prediction of future fast-
fill station behaviour optimized for minimum electricity
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Fig. 1. Schematic layout for the fast-fill CNG station

cost while dealing with possible disturbances in the gas
demand profile at the station.

2. STRATEGY FORMULATION

The schematic diagram for the CNG fueling station is
shown in Figure 1. In the baseline operation, gas from the
utility is compressed at the station compressor, turned on
at switch u. The gas is filled into the three tanks of the
cascade storage to raise pressure from the minimum values
corresponding to a mass minimum mmin. The gas passes
through the priority panel valves which transfer the filling
between the three levels of the cascade storage until the
maximum pressure is reached corresponding to a maxi-
mum mass of gas mmax, when the compressor is switched
off. Vehicles fuelling at the station via the dispenser receive
gas in kilogram from the cascade storage with the dis-
penser algorithm compensating for temperature variations
and switching between the three levels of the cascade
storage to ensure the flow rate of gas is maintained above a
minimum value. When the gas levels in the cascade storage
reach mmin, the compressor is turned on to replenish the
storage. The cost of electricity incurred by the running of
the station compressor is dependent on the time of day
because the compressor is operating in the TOU regime.
The objective of the present study is to optimally schedule
compressor-on time such that gas demand at the station is
met, and at the same time, minimum electricity costs are
incurred. The system is considered as a mass flow system
where mass exiting the cascade storage to vehicles must
be adequately replenished by the compressor to enable
adequate filling of subsequent vehicles. The pressure limits
of each of the three reservoirs of the cascade storage are
normally such that the mass of gas held in storage is able
to fill any vehicle visiting the CNG station and has a
corresponding mass limit when the system is considered as
a mass flow system (Kagiri et al. (2017, 2018)). A robust
MPC approach is proposed in order to determine system
performance in the control horizon while also maintaining
the ability to deal with disturbances in gas demand. The
control action at the current instant is obtained by solving
a finite open loop optimization problem using the system’s
current state of mass of gas in cascade storage as the initial

state (Bemporad et al. (2002)). The compressor switch u,
is the control variable for the current problem so that

u(k|k) ∈ {0, 1} (1)

which is the predicted status of the switch at the kth
sampling interval based on information available at time t
and N is the control horizon and

N =
T

ts
− k + 1 (2)

where T is the total simulation time and ts is the sampling
time. The objective function is to minimize electricity cost
from the compressor-on time such that

J =

k+N−1∑
j=k

PcompPe(j)u(j|k) (3)

where Pcomp is the power rating of the compressor, Pe(k)
is the price of electricity per kWh. It is also important to
limit the frequency of on/off actions that the compressor
switch undergoes because high frequencies of start/stop
instances increases the wear and tear on the compressor’s
mechanical parts (Nguyen et al. (2008)). We minimize
the difference between the value of the first control step
solution in the current control instant and the first control
step solution in the previous iteration

J = (ξ)

k+N−1∑
j=k

PcompPe(j)u(j|k)+(1−ξ)(u(j+1/k)−u(j|k))2 (4)

where ξ is a weighting factor chosen so that a minimum
number of switching times is achieved with no increase in
cost of electricity from the global minimum. The objective
function is subject to the constraints of storage capacity
such that

mmin ≤ m(j|k) ≤ mmax (5)

where

m(j|k) = m(k)+ ts

j∑
i=k

ṁcmpu(i|k)−
j∑

i=k

mo(i) k ≤ j ≤ k+N −1

(6)

where ṁcmp is the mass flow rate of gas from the com-
pressor and mo(i) is the gas dispensed in the ith sampling
instant, whose values are the gas demand profile over the
control horizon. In the algorithm, the linear inequality is
transformed to

AmpcXmpc ≤ bmpc
1 (7)

−AmpcXmpc ≤ bmpc
2 (8)

where

Ampc =


−tsṁcmp 0 · · · 0
−tsṁcmp −tsṁcmp · · · 0

...
...

. . .
...

−tsṁcmp −tsṁcmp · · · −tsṁcmp


N×N

(9)

b1 =


m(k)−mmin−mo(k)

m(k)−mmin−
(
mo(k)+mo(k+1)

)
.
.
.

m(k)−mmin−
(
mo(k)+mo(k+1)+· · ·+mo(k+N−1)

)


N×1

(10)
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b2 =


mmax−m(k)+mo(t)

mmax−m(k)+

(
mo(k)+mo(k+1)

)
.
..

mmax−m(k)+

(
mo(k)+mo(k+1)+· · ·+mo(k+N−1)

)


N×1

(11)

The linear inequality constraints in the form of AX ≤ b
becomes

A =

[
Ampc

−Ampc

]
2N×N

b =

[
b1
b2

]
2N×1

(12)

Additionally, the objective function is subject to the
terminal constraint

m(N) = m(0)+ts

k+N−1∑
i=k

ṁcmpu(i|k)−
k+N−1∑

i=k

mo(i) = m(0)

(13)
which in the algorithm can be written as

Ampc
eq Xmpc ≤ bmpc

eq (14)

where

Ampc
eq =

 0 · · · 0
...

. . .
...

tsṁcmp · · · tsṁcmp


N×N

(15)

bmpc
eq =


0
0
...

m(0)−m(k)+

(
mo(k)+· · ·+mo(k+N−1)

)


N×1

(16)

The control vector for the problem, Xmpc can be written
in the standard form

Xmpc = [u(k|k), u(k + 1|t) · · ·u(k +N − 1|k)]TN×1 (17)

and in the general OPTI toolbox solver algorithm the
objective function is formulated as

minx f
Tx subject to =


A · x ≤ b
Aeq · x ≤ beq
x ∈ {0, 1}

(18)

At a sampling instant t, the controller solves an open loop
optimization problem for the horizon N . The first element
of the control variable u(k|k) in the solution is the only
one that implemented on the plant. The state m(j|k) is
then measured and the measured quantity is fed back to
the controller for use as the initial mass of the system for
the subsequent sampling instant, k+1. All input variables
are also updated and the optimization cycle repeated up
to the end of the total simulation time.

The workflow of the MPC controller is,

(1) For the instant t, find the control horizon N(t) using
Equation (2)

(2) Find the optimal solution for the control variable u ∈
{0, 1} in the control horizon, by minimizing objective
function (4)with m(k) subject to the constraints (5)
and (13)

(3) Implement only u(k|k) to the plant from the solution
(4) Measure the state m(k + 1) for feed back
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Fig. 2. CNG demand at the fast-fill station unit

(5) set k = k + 1 and update system states, inputs and
outputs

(6) Repeat steps 1-5 until k reaches predefined value

3. CASE STUDY

A CNG fuelling station in Johannesburg, South Africa
is the case study for the present work. The station is
supplied with natural gas from the municipal pipeline
via a 132kW reciprocating compressor with a capacity of
900Nm3/hr which has a three line priority panel feeding
a 6000L cascade storage. The cascade storage tanks have
a minimum operating pressure of 210,150 and 75 bars
respectively for the high pressure, medium pressure and
low pressure levels respectively while all the three levels
of the cascade storage are filled to a maximum pressure of
250bar.

The gas demand profile at the station dispenser for a
24 hour control horizon is shown in Figure 2. Peak gas
demand is experienced in the morning hours between
05:00 and 10:00, which is a time of day where people
begin journeys to various destinations for the day. A
substantial demand peak is also observed late afternoon
at 15:00 as motorists fill up their vehicles in preparation
for the evening people movement rush hour. Gas demand
in the night is lower than during the day, although some
motorists fuel in preparation for the next day’s travel.
The station purchases electricity from the South African
national utility provider Eskom, under the Miniflex TOU
tariff where the price of electricity Pe(t) in South African
Rands per kilowatt hour (R/kWh) is

Pe(t) =


poffpeak = 0.5157 if t ∈ [0, 6] ∪ [22, 24]

pstandard = 0.9446 if t ∈ [9, 17] ∪ [19, 22]

ppeak = 3.1047 if t ∈ [6, 9] ∪ [17, 19]

with poffpeak, pstandard and ppeak being the prices for the
offpeak, standard and peak times as determined by the
utility respectively. Beginning with maximum mass of gas
held in the cascade storage mmax and the compressor off,
the vehicles are fuelled in the baseline operation until the
mass of gas in storage falls to the minimum mmin. The
compressor switch u is turned on to fill up the cascade
storage until maximum mass of gas in storage mmax is
reached when the compressor is switched off and the cycle
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Fig. 3. Compressor operation and level of gas in the
cascade storage under baseline operation
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Fig. 4. CNG demand at the fast-fill station unit with a
demand profile disturbance

is repeated. Figure 3 shows the compressor switch action in
the baseline operation and the change in the mass of gas
in the cascade storage. The compressor operation in the
morning peak electricity pricing time, standard electricity
pricing time as well as partial on-state in the evening peak
electricity pricing times incur R432.59 in electricity cost
for the day. The current study optimizes the compressor
operation so that compressor on-state is minimized in
the higher electricity pricing times while also minimizing
switching frequency and having the ability to respond to
disturbances.

3.1 Gas demand disturbance

A sudden change in gas demand caused by some vehicles
shifting fuelling time from between 20:00 and 23:59 to
between 17:00 to 19:00 is considered as a plausible source
of disturbance in the CNG fast-fill station, so that the gas
demand changes from that shown in Figure 2 to that in
Figure 4. The disturbance is characterized by there having
zero vehicles fuelling in the last two hours of the 24 hour
period under the study.

4. RESULTS AND DISCUSSION

The solution to the optimization problem is obtained using
the SCIP solver in Matlab’s OPTI toolbox interface over
a control horizon of 24 hours with a sampling time of 4
minutes and a weighting factor ξ of 0.2. The compressor
switch action and the state of mass in the cascade storage
are shown in Figure 5. The compressor is turned on just
before the morning peak to replenish the cascade storage
so that gas in storage can sustain the morning demand
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Fig. 5. Compressor operation and level of gas in the
cascade storage under optimized operation
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Fig. 6. Compressor operation and level of gas in the
cascade storage under optimized operation with a
demand profile disturbance

over the peak electricity pricing period between 06:00 and
09:00. The compressor stays off during the morning peak
and is turned on after the end of the morning peak to fill
up the cascade storage in order to meet late morning and
early afternoon gas demand. The compressor is further
turned on briefly just before the onset of the evening peak
electricity pricing time at 17:00 ensuring the compressor
stays off in that peak pricing period and is tuner on in
the late night off-peak electricity pricing period to satisfy
the terminal conditions. The cost of electricity incurred
under the MPC optimized operation is R199.54 which is
a significant 53.87% reduction in electricity cost from the
baseline.

When the disturbance is considered, the controller under
the MPC strategy adjusts the system response accordingly
resulting in a shift in the compressor switch profile and
level of gas in storage to the new one shown in Figure 6.
The system meets the new gas demand profile by shifting
compressor on-state from between 21:48 and 22:16 without
the disturbance to between 20:28 and 20:52 when the
disturbance occurs. The robustness of the MPC strategy is
demonstrated in responding to shifts in the demand profile
although at a higher electricity cost of R218.42, but still
achieves 49.5% in electricity cost savings.

5. CONCLUSION

CNG fuelling stations can benefit from operation optimiza-
tion in order to take advantage of TOU tariff differential
pricing of electricity and save on energy costs. The MPC
approach proposed in this study allows for the achievement
of these advantages while remaining responsive to changes
in gas demand profile that are bound to occur in a public
CNG fuelling station. Participation of CNG stations in
DR programs enable savings that may be passed on to
consumers as incentives. By shifting operations to lower
priced electricity usage time of the day using the pro-
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posed strategy, the CNG station also contributes to the
achievement of the power utility provider’s goal of affecting
customer behavior in order to reduce the strain on grid
resources at certain times of the day. The CNG stations
by participating in these DR programs therefore aid in
achievement of the wider goal of increasing grid reliability
and efficiency.
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