
Robust Sampling Time Design for
Biochemical Systems

Hui Yu*, Hong Yue, ∗ Peter Halling ∗∗

∗Department of Electronic and Electrical Engineering, University of
Strathclyde, Glasgow G1 1XW, UK (e-mail: hui.yu.100@strath.ac.uk;

hong.yue@strath.ac.uk)
∗∗WestCHEM Department of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, UK (e-mail: p.j.halling@strath.ac.uk)

Abstract: Optimal sampling time design by considering parameter uncertainties has rarely
been considered in published research. In this work, the robust experimental design (RED) for
sampling time selection is investigated. The aim is to exploit the sampling strategy using which
the experiment can provide the most informative data for improving parameter estimation
quality. With an enzyme reaction case study system, two global sensitivity analysis (GSA)
approaches, the Morris screening method and the Sobol’s method, are firstly applied to find out
the key parameters that have large influences to model outputs of interest. Then three different
RED methods, the worst-case strategy, the Bayesian design, and the GSA-based approach, are
developed to design the optimal sampling time schedule. Simulation results suggest that, among
the three RED methods, the equally spaced sampling from the Bayesian design has the best
robustness towards parameter uncertainties.
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1. INTRODUCTION

Optimal experimental design (OED) is a useful technique
for data-based modelling, especially for biochemical and
biological systems with complex dynamics. Performing ex-
periments for such systems is usually expensive and time-
consuming, it is therefore helpful to design the experiments
by taking into account requirements for parameter esti-
mation so that the data collected will be of good value.
In model development of a biochemical system, typical
aspects in experimental design include the initial input
conditions, the external time-varying input profiles, the
sampling time schedule, the measurement set selection,
etc. A number of OED methods have been reported in
recent works (Gil et al., 2014; Hagen et al., 2013; Yu
et al., 2015; Paquet-Durand et al., 2015), most of which
lead to local optimum results that depend on the current
estimates of parameter values. In practice, model parame-
ters of complex systems are usually only roughly known in
priori, the OED results can therefore be over-optimistic in
certain cases. It is requisite to develop efficient methods of
robust experimental design (RED) that can involve model
uncertainties in the design stage.

Model-based OED is mostly developed on the Fisher In-
formation Matrix (FIM), which is a measure of informa-
tion contained in data. The FIM can be calculated from
local parametric sensitivities, i.e., the first-order partial
derivatives of the model outputs over the parameters.
Parameter sensitivities are functions of model parameters
which means that the FIM is also determined by parameter
values. For this reason, experimental designs based on FIM

properties are regarded as local designs. The effectiveness
of the design depends on how close the assumed model
parameters are to the real values. Furthermore, important
parameters selected based on local sensitivity analysis
(LSA) depend also on the assumed parameter values.
When model parameters contain large uncertainties, it is
necessary to analyse parameter effects, on model outputs,
through the whole parameter range rather than at a local
set. Therefore, global sensitivity analysis (GSA) is required
to comprehensively investigate parameter effects on model
outputs of interest.

Different from the popular OED development in the past
decades, there are very few developments of RED. One
big challenge in RED is how to formulate the RED prob-
lem including a quantitative representation of model un-
certainties. Another challenge is that the computational
load for solving RED problems is much higher than OED
because the whole parameter range, rather than a certain
parameter set, need to be examined in RED. Most RED
methods are developed from extension of OED methods,
for example, a robust measurement set design is developed
for a biochemical pathway model (He et al., 2010; Brown
et al., 2008). Other work on the robust design of input
conditions can be found in (Vanlier et al., 2012; Mdluli
et al., 2015; Telen et al., 2013). To the best of our knowl-
edge there is no work reported on the robust sampling
time design by considering parameter uncertainties. In this
work, we aim to investigate RED for complex biochemical
systems, with a particular focus on the design of sampling
time profile for a case study enzyme reaction system. To
support the RED with model uncertainties, GSA rather
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than LSA will be employed to examine the parameter
effects on model outputs.

The rest of this paper is organised as follows. In Section
2, preliminaries on general model description and OED
are briefly introduced. Two GSA methods are discussed
in Section 3 for sensitivity analysis of model parameters
with large uncertainties. Three robust design strategies,
the worst-case approach, the Bayesian design, and a GSA-
based method, are investigated for the sampling time
selection in Section 4. Then the RED of sampling time
design for an enzyme reaction system and the analysis of
simulation results are presented in Section 4. Conclusions
and future work are discussed in Section 5.

2. PRELIMINARIES

2.1 Mathematical Model Representation

A continuous dynamic model written in ordinary differ-
ential equations is one of the most prominent model de-
scriptions for chemical and biochemical systems. Consider
a general biochemical model with n state variables and p
parameters, the state transition and output models can be
represented as follows:

Ẋ (t) = f (X (t) ,θ) , X(t0) = X0

Y = h (X (t) ,θ) + ξ (t)
(1)

where f (·) is a set of state transition functions of the
system dynamics which are assumed to be continuous and

first-order derivative; X = [x1, x2, . . . , xn]
T ∈ Rn denotes

the vector of n state variables with initial condition X0;

θ = [θ1, θ2, . . . , θp]
T ∈ Rp is the vector of p model param-

eters; Y = [y1, y2, . . . , ym]
T ∈ Rm is the measurement

output vector with m (m ≤ n) measurable variables,
and h (·) is the measurement function, normally used for
selecting which variables to be measured. ξ is the vector of
measurement errors which can be classified into systematic
errors and random errors. The experiments should be
designed to eliminate the systematic errors. However, the
random errors that disturb the observations always exist.
Most often the measurement error is assumed to be a zero
mean, Gaussian white noise.

2.2 Basics of Optimal Experimental Design

The Fisher information matrix (FIM) is widely used in
OED as the basis to quantify the information content
of parameter estimation. When the design factors that
characterise the experiment are denoted as φ, the FIM
can be expressed as (Zullo, 1991):

FIM (θ,φ) = S (θ,φ)
T

WS (θ,φ) (2)

where the weighting matrix W quantifies the reliability
of measurement data at every specific point, which is
normally taken as the inverse of the measurement error
covariance matrix. S = ∂X/∂θ is the local parametric sen-
sitivity matrix representing the local effect of parameters
on model outputs. Based on the Cramer-Rao inequality,
the FIM is approximately equal to the inverse of parameter
estimation error covariance matrix, thus provides the local
lower bound of the variance for parameter estimates. The

OED problem can be expressed as the optimisation of a
proper measure of parameter error covariance matrix, i.e.

φ∗ = arg min
φ∈Φ

υ
((

FIM−1 (θ,φ)
))

(3)

where Φ is the admissible space of the design factors,
υ (·) represents a scalar function of the inverse of FIM.
The most commonly used design criteria are A-optimal,
D-optimal, E-optimal, and modified E-optimal design
(Ljung, 1998).

3. GLOBAL SENSITIVITY ANALYSIS

Global sensitivity approaches are alternatives to LSA to
quantify parameter effects on model outputs, which are
especially useful when large parameter uncertainties are
contained in the model. The main advantage of GSA
over LSA from the experimental design point of view
is that parameters can be varied simultaneously, rather
than individually, over their entire uncertainty range to
investigate their effects on the outputs. GSA aims at
apportioning the output uncertainty to the uncertainty in
the model parameter values. The effect on the outputs of
changing one parameter while all the others are varied as
well is evaluated by GSA and this can help in discovering
parameter interactions in a model. In this work, the
following two GSA methods are employed. For brevity we
ignore time and state variables and the model is expressed
as f(θ).

3.1 Morris Screening Method

The Morris screening method (Morris, 1991) is a measure-
ment tool of global sensitivity which is based on the so
called elementary effect (EE). A number of values of EEs
for each parameter can be obtained through a predefined
randomly selected sampling strategy. The distribution of
EEs from the i -th parameter is denoted as Fi. The sen-
sitivities are measured in two parts: µi, the mean of EEs
is an estimate of the overall effect of the i -th parameter
on model outputs; σi, the standard deviation of EEs is
an evaluation of the ensemble of influence of the i -th pa-
rameter, which is attributed to the interactions with other
parameters. These two measures will be used to identify
which parameters should be considered as important to
(selected) outputs.

Consider a general model with p parameters and an output
y, y = f(θ1, θ2, · · · θp). Each parameter has an uncertainty
region which is scaled from 0 to 1; and it may take values
from {0, 1/(p− 1), 2/(p− 1), · · · , 1}. Then the EE of the
i -th parameter is defined as

EEi(θ) =

√(
f(θ1, · · · , θi + ∆, · · · , θp)− f(θ)

∆

)2

(4)

where ∆ is a predetermined multiple of 1/(p − 1) and
is taken to be ∆ = 2/(2p − 2). Producing a value for
Fi requires random selection of a value for each θi from
the grid and evaluation of y twice, one at the selected
parameter values, the other after increasing θi by ∆. The
difference between these two runs yields one EE term. The
calculation will be repeated γ times to produce a random
sample of γ EEs for Fi. This method is computationally
cheap as it requires a relatively small number of model
evaluations compared to other GSA approaches.
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3.2 Sobol’s Method

Sobols method (Sobol, 2001) is a popular GSA technique
based on analysis of variance. In general, variance-based
sensitivity analysis methods aim to quantify the amount
of variance that each parameter contributes to the total
variance of model outputs. With Sobol’s sensitivity analy-
sis, the variances caused by either a single parameter or by
the interactions of two or more parameters are expressed
as sensitivity indices. For a model represented by (1) with
p parameters, the model function can be decomposed into
summation of increasing dimensionality:

f(θ) =f0 +

p∑
i=1

fi(θi) +

p∑
i=1

p∑
j=i+1

fi,j(θi, θj) + · · ·

+ f1,2,··· ,p(θ1, · · · , θp)
(5)

where f0 equals to the expectation value of the output.
The total variance can then be determined as:

V =

∫
Ωp

f2(θ)dθ − f2
0 (6)

with Ωp the p-dimensional hypercube space of model pa-
rameters. The partial variances, which are the components
of the total variance decomposition, are computed from
each of the terms in (5) as

Vi1,··· ,ik =

∫
i1

· · ·
∫
ik

fi1,··· ,ik(θi1 , · · · , θik)dθi1 · · · dθik (7)

where 1 ≤ i1 ≤ · · · ≤ ik ≤ p. With the assumption
that parameters are mutually orthogonal, the variance of
outputs to parameters can be decomposed as:

V =

p∑
i=1

Vi +

p−1∑
i=1

p∑
j=i+1

Vi,j + · · ·+ V1,2,··· ,p (8)

In this way, the variance contributions to the total output
variance of individual parameters and parameter interac-
tions can be determined. These contributions are charac-
terized by the ratio of the partial variance to the total
variance, the Sobol sensitivity indices, as follows:

First order SI: Si = Vi

V

Second order SI: Si,j =
Vi,j

V

Total order SI: STi
= Si +

∑
j 6=i Si,j + · · ·

The first order index is a measure for the variance contri-
bution of the individual parameter θi to the total model
variance which is also called the main effect. STi is the
result of the main effect of θi and all its interactions with
other parameters.

4. ROBUST SAMPLING TIME DESIGN

To handle model uncertainties in experimental design, the
most often used approach is to design experiments in a
sequential way by alternating parameter estimation and
experimental design (Hering and Šimandl, 2010; Goujot
et al., 2012). In each iteration, the knowledge of the system
parameters is improved by estimation and this knowledge
can then be used to improve the quality of the next OED.
While this approach is intuitive, in practice, it could be
difficult to perform many (sequential) experiments on the
same system due to limited experimental resources. Also,

it is not guaranteed that the parameters will converge to
the true values after iterations.

Another approach to RED aims at determining the ex-
periment that optimises the worst possible performance
for any values of θ belonging to the parameter domain Θ
(Körkel et al., 2004; Flaherty et al., 2006; Rojas et al.,
2007). The RED optimisation problem can be formulated
as

φ∗ = arg max
φ∈Φ

min
θ∈Θ

(υ (FIM(θ,φ))) (9)

For a proposed design, find the model parameters for
which the scalar value of the FIM is the smallest, i.e.
the worst possible obtainable information content for this
specific design is determined. Next, design the experiment
which can maximize the scalar value of the FIM with
the worst parameter combination. Using this technique,
the prior information on the parameters is limited to the
knowledge of the parameter domain, i.e. the upper and
lower bounds of the parameters. No information on the
probability distribution of parameters is necessary.

Instead of dealing with the parametric uncertainty with a
worst-case maximin design strategy, an alternative way is
to take account of parametric uncertainty by considering a
prior distribution p(θ) of parameters in the design process,
which leads to the Bayesian experimental design (BED)
(Tulsyan et al., 2012; Murphy et al., 2003). BED is to
quantify the statistical representation and treat the ex-
perimental design problem under the Bayesian framework.
Different from classical OED for non-linear models which
depends on the nominal parameter values, or the max-
imin design that is based on the worst-case parameters,
BED is based on prior distribution of parameter estimates
and their variance, rather than on the chosen single-point
values. A BED thus incorporates more comprehensive
knowledge of model parameter estimates. In the Bayesian
design framework, an experiment is said to be optimal if
it satisfies (Huan and Marzouk, 2014; Ryan et al., 2014):

φ∗ED = arg max
φ∈Φ

Eθ∈Θ (υ (FIM(θ,φ))) (10)

where E represents the expected value of the scalar func-
tion υ over all possible parameter values. The expecta-
tion is calculated with respect to the prior distribution of
parameters p(θ), over the entire parameter space Θ and
the maximisation is performed over the entire space Θ.
Typically, numerical integration using a discretised version
of the probability density function is used to evaluate the
expectation. This solution is numerically rather burden-
some if fine discretisation is used and many parameters are
involved. Therefore, a multi-dimensional quadrature rule
for approximating the multiple integral (over all parame-
ters) can be applied. Another alternative would be to use
Monte Carlo techniques to approximate the expectation,
requiring however a large number of realisations before
convergence can be achieved.

The connection between GSA and OED has been discussed
recently in (Chu and Hahn, 2013), where the consistency
condition for applying OED criteria to GSA results has
been investigated. When a model is linear in model pa-
rameters, the design based on the global sensitivity matrix
(SG) can be reduced to the conventional linear design
based on the design matrix, that is,
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lim
∆θ→0

υ
(
STGSG

)
= υ

(
STLSL

)
(11)

One should note that not all GSA techniques satisfy the
consistency condition. In this work, two different GSA
methods are integrated to the OED procedure. The first
one is given by the mean of the local sensitivities over the
parameter uncertainty region, which can be expressed as

si = E
[
∂X

∂θi

]
. (12)

The expectation of local sensitivities of θi over all its
possible values represents the average effect of θi on X.

The second GSA method is based on the mean of squared
sensitivity values which can avoid the cancellation of
the negative effect values of parameter sensitivities, the
formulation of which is given as

si =

√√√√√√√


E
[(

∂X
∂θi

)2
]

var
[
∂X
∂θi

] − 1

 (13)

5. CASE STUDY FOR AN ENZYME REACTION
SYSTEM

5.1 Global Sensitivity Analysis

The effectiveness of the proposed RED method in Section
3 is examined with simulation to an an enzyme reaction
system. The full model equations, the nominal values of
the kinetic parameters and the initial condition of input
variables can be found in (Yue et al., 2013). In this
simulation study, the experimental length is set to be
6000 seconds, and a total number of 200 equally spaced
sampling points along the whole reaction time are selected
for GSA caculation. The Morris sensitivity method and the
Sobols sensitivity method are applied in order to identify
key parameters that are most influential on model outputs.

With the Morris screening sensitivity analysis, the lower
and upper bounds for uncertainty ranges of model param-
eters are set to be 50% and 150% of their nominal values.
The parameters are assumed to follow uniform distribution
within their bounded ranges. The number of levels, p, and
the repetition number of runs, γ, are set to be 6 and
100, respectively. The parameter effect on different model
outputs by using the Morris screening method is shown in
Fig. 1. The parameter ranking based on the mean values
of EEs is listed in Table 1.

Table 1. Parameter importance ranking based
on the mean value of elementary effects

Model outputs Parameter ranking (descend)

S k1, k2, k−1, k5W , k−2, k4
P k1, k2, k−1, k5W , k−2, k4
N k3, k5W , k−3, k4, k−4, k1
Q k3, k5W , k−3, k4, k−4, k1
R k5W , k2, k1, k3, k−1, k6

All five outputs k5W , k2, k1, k3, k−1, k−5

It can be seen that for state variables S and P , param-
eters k1, k2 and k−1 are obviously the most important

Fig. 1. Estimated mean and standard deviation of EEs for
all 11 model parameters on all 5 model outputs

parameters. The effect of parameters on state variables N
and Q are rather different, in which the most important
parameters are found to be k3 and k5W . For state variable
R, k5W is found to be the more important parameter.
By considering all these five model outputs, parameters
[k1, k2, k5W ] are identified to be the three most important
parameters.

Next the Sobols GSA algorithm is applied to investigate
the parameter effect based on the analysis of variance
values. Simulation conditions on parameters and input
variables are set to be the same as in Morris screening
analysis. The Latin hypercube sampling strategy is em-
ployed where ten thousand samples for model parameters
are selected for the analysis. The first order sensitivity
measures and the total sensitivity measures by considering
different model outputs are shown in Fig. 2. It can be
observed that, for state variable S, k2 is more important
than other parameters; for state variable Q, the most
important parameters are k5W , k−3, and k3. This result
is similar to the GSA from the Morris screening method.

Fig. 2. Parameter effect to selected model outputs based
on the analysis of variances, including the main effect
and the total effect
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5.2 Design of Sampling Time Schedule

Three different robust design methods are applied and
compared for the sampling time design of the enzyme
reaction system. Parameters k2, k−3 and k5W are selected
in the design framework. In all three different experimental
design simulations, the parameter uncertainty range is
set to be 0.5-1.5 times of nominal parameter values.
For the maximin robust design, the Powells method is
applied for the optimal sampling time selection and the
particle swarm algorithm is implemented to find the worst
parameter values that will lead to the least informative
data. In the Bayesian sampling time design, the Monte
Carlo sampling strategy is employed to select ten thousand
random parameter sets. In all three RED strategies, the D-
optimal design criterion is used and the objective is to find
twenty best sampling time points that can best facilitate
parameter estimation when parameter uncertainties are
considered. The RED results are listed in Table 2.

Table 2. Robust sampling time design with
different RED techniques

RED methods Sampling time points (sec) D-values

Maximin design

method

[330:30:510] [3300:30:3450]

[4800:30:4980]

8.84e-8

Bayesian design

method

[450:30:660] [2040:30:2100]

[3060:30:3120] 3870 3900 4860

4890 5970 6000

6.02e-6

GSA based de-

sign (12)

[630:30:810] [5610:30:5970] 1.47e-5

GSA based de-

sign2 (13)

[1080:30:1260] [5610:30:5970] 0.0012

For the maximin robust design, the final obtained param-
eter values for the three selected parameters are k2 = 150,
k−3 = 300 and k5W = 7500. By using this design method,
the data information is maximised even if the worst pa-
rameter set is chosen. The exact sampling time points are
selected at the start and middle stage of the reaction while
the data information in the late stage of reaction is ignored
(shown in Fig. 3). For the Bayesian robust sampling time
design, the sampling time is loosely distributed along the
whole reaction time and the averaged data information
is maximised. The equally spaced sampling strategy is
suggested. In other words, data information at each avail-
able sampling point has equal importance when model
parameters contain large uncertainties. The GSA based ex-
perimental design can lead to more informative data. The
exact sampling time points can be divided into two groups,
in which the sampling time points should be selected at the
start of the reaction and at the end of the reaction (shown
in Fig. 3), in which each row represents one strategy (the
scales in the vertical axis has no quantitative meaning)

In order to compare the design results from the 3 RED
methods, we select 27 different parameter sets for k2, k−3,
and k5W , where each parameter can be chosen as 0.5,
1 and 1.5 times of their nominal values. The D-optimal
values of different parameter sets with their corresponding
optimal sampling strategies are listed in Table 3.

It can be seen from Table 3 that the results from the
maxmin and the Bayesian designs are better compared
to the two GSA-based designs. This is because the GSA is

Fig. 3. Sampling time distribution obtained from three
different RED methods

Table 3. Comparison of D-values among RED
methods with various parameter sets

RED methods best

ln(det(FIM))

mean of

ln(det(FIM))

standard

devia-

tions

Maximin design

method

-34.16 -38.44 2.87

Bayesian design

method

-33.80 -38.22 2.61

GSA based de-

sign (12)

-50 -52.49 2.07

GSA based de-

sign2 (13)

-33.75 -41.75 4.17

averaged along the whole range of parameter uncertainties,
and there exists one certain parameter set, the sensitivities
of which are close to the averaged GSA values. Therefore,
the GSA based design result is close to the local design by
using that particular parameter set. The performance of
GSA based design is only good when parameter estimates
are close to the true values. The standard deviation value
also shows that this kind of design is sensitive to parameter
values. The maximin design and Bayesian design, however,
can provide higher D-values and smaller deviations, which
indicate that these robust design methods are less sensitive
to the change of parameter values and can provide in
average higher data information than local design or GSA
based designs. The Bayesian design is slightly better than
the maximin design through the comparison of standard
deviations, which implies that equally spaced sampling
time selection is perhaps the best option when parameter
uncertainties are large.

6. CONCLUSIONS

In this work, we have investigated RED for sampling time
scheduling when model parameters are uncertain. Using
a kinetically controlled synthesis process model, two GSA
approaches, the Morris screening method and the Sobols
sensitivity analysis, are implemented to determine crucial
model parameters. The Morris method is based on the
analysis of the EEs of model parameters on the outputs.
The Sobol’s method calculates the variance of the model

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

213



outputs attributed to parameter variations. Both GSA
methods lead to similar results, in which k2 and k5W
are found to be the most important parameters. Three
RED methods are developed and applied to the sampling
time design for an enzyme reaction system. Based on
the simulation results, the maximin design can assure
the maximal data information in the worst parameter
set, while the Bayesian experimental design maximises
the averaged data information along the whole range of
parameter uncertainties. When GSA is integrated with
the experimental design criteria, it can make the best
performance in terms of the D-optimal value. However, by
using this method, parameter uncertainties are averaged
during sensitivity analysis. The final optimised sampling
strategy might be associated to one particular parameter
set (the one which is close to the averaged parameter
sensitivity). This cancellation effect deteriorates the GSA-
based RED performance. Through the comparison of the
three RED simulation results, the equally spaced sampling
time profile is demonstrated to be the best sampling
strategy for systems with large parameter uncertainties.

Further investigations will be made to validate the robust
sampling time design for other complex systems. Also,
the integration of different design factors in one RED
framework is a challenging task as the RED for different
design factors are usually expressed as different optimisa-
tion problems. More efficient OED methods and numerical
strategies need to be developed that could combine those
design factors into one optimisation problem, so that the
data information generated from designed experiment are
less sensitive to model parameters.
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