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Abstract: Optimal operating conditions for a process plant are typically obtained via model-
based optimization. However, due to modeling errors, the operating conditions found are often
sub-optimal or, worse, they can violate critical process constraints. Hence, model corrections
become a necessity and are done by exploiting measured process data. To this end, either model
parameters are adapted and/or correction terms are added to the model-based optimization
problem. The modifier-adaptation methodology does the latter by adding bias and gradient
correction terms that are called modifiers. The role of modifiers and model parameters are often
seen as competing, and which one of the two is better suited to track the optimality conditions
is an open problem. This paper attempts to shed light on finding a synergy between the model
parameters and the modifiers in the case when tracking constraints is sufficient for near-optimal
performance. We demonstrate through the simulation study of a batch-to-batch optimization
problem that a set of model parameters can be selected that mirror the role of modifiers.
The modifiers are then added only when there is insufficient number of mirror parameters for
independent constraint tracking.

Keywords: model-based optimization, real-time optimization, model-plant mismatch,
parameter estimation, parameter selection, modifier adaptation

1 INTRODUCTION

Model-based optimization enables process plants to attain
optimal performance, while meeting constraints on prod-
uct quality, environmental regulations and safety. Since
models are mere approximations of the actual process,
they need corrections that are based on process data. An
iterative optimization procedure that attempts to reach
plant optimality by model corrections is known as model-
based real-time optimization (RTO).

In RTO, there have been several attempts to correct
the model via parameter adaptation. The classical two-
step approach (Chen and Joseph, 1987) adapts the model
parameters to minimize the output error, and new inputs
are computed on the basis of the updated model. To
find the plant optimum, the whole procedure is repeated
until convergence. Recently, Mandur and Budman (2015)
proposed to iteratively adapt model parameters in two
stages. In the first stage, the output error is minimized,
and, in the second stage, the errors on the cost and
constraint gradients are minimized.

Due to model complexity, limited information in the pro-
cess data and the presence of noise, model corrections
based on parameter adaptation is often insufficient in
capturing the optimal plant behavior (Forbes et al., 1994;
Yip and Marlin, 2004; Marchetti, 2009). The plant opti-

mality conditions can be tracked via parameter adaptation
if the model offers sufficient flexibility (Chachuat et al.,
2009). Since the parameter estimation problem is often
nonlinear in parameters and also because of parameter
identifiability issues, ensuring sufficient model flexibility
is not straightforward. To the best of our knowledge, the
current literature does not provide such analysis.

Despite the aforementioned issues, parameter adaptation
has some obvious benefits. For instance, adapting model
parameters may favorably impact the curvature informa-
tion, thereby potentially increasing the convergence rate
to the optimum (Ahmad et al., 2017). Also, Mandur and
Budman (2015) showed through a simulation study that
the noise in process data can be better handled by adapt-
ing model parameters. Moreover, adapting model param-
eters is strongly advocated when the model is expected
to be structurally correct in the sense that there exists
parameter values such that the model and the plant have
matching outputs and gradients.

Other real-time optimization approaches such as inte-
grated system optimization and parameter estimation
(ISOPE) (Brdyś and Tatjewski, 2005) and modifier adap-
tation (MA) (Gao and Engell, 2005; Marchetti et al.,
2009, 2016) use bias and/or gradient correction terms
that can directly be added to the model-based optimiza-
tion problem. In MA, the added correction terms are
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tailored to meet the necessary conditions of optimality,
thereby providing complete model flexibility (Chachuat
et al., 2009). Hence, MA guarantees meeting the Karush-
Kuhn-Tucker (KKT) necessary conditions of optimality
for the plant upon convergence. However, the computation
of modifiers often requires additional plant experiments to
estimate gradients, which makes MA an experimentally
expensive methodology. Costello et al. (2016) and Singhal
et al. (2017, 2018) proposed to perform a model-based
sensitivity analysis to reduce the experimental cost as
only a partial correction is made to update the model-
based optimization problem. However, since the sensitivity
analysis is model based, a model that is far off the reality
may not result in sufficient corrections. Moreover, handling
noise in MA poses a challenge as it enters the optimiza-
tion problem via modifiers. Gao et al. (2016) proposed a
quadratic-approximation-based MA scheme that requires
additional data to mitigate the impact of noise.

Given the pros and cons of adapting model parameters
and of adapting modifiers, there is a need for better under-
standing and, accordingly, establishing synergies between
the two. Since the model parameters often do not offer
sufficient flexibility, it is desirable to introduce modifiers
to compensate for this lack of flexibility. In this paper, we
focus only on cases where tracking constraints is sufficient
for near optimal performance. We exploit tools such as sen-
sitivity analysis and active subspaces (Constantine et al.,
2014; Constantine, 2015) to analyze model flexibility. This
way, a set of parameters can be found that behave similar
to modifiers. Subsequently, modifiers are added only to
constraints that lack so-called mirror parameters.

The paper is structured as follows. Section 2 briefly revisits
different adaptation strategies and presents the concept
of influential and non-influential parameters. Section 3
presents desired characteristics that the adapted param-
eters should possess and proposes an active-subspace-
based procedure that selects parameters that have desired
properties. Section 4 summarizes the proposed adaptation
strategy. A simulation study is discussed in Section 5.
Finally, Section 6 concludes the paper.

2 PRELIMINARIES

2.1 Problem Statement

The optimization of process operation consists in mini-
mizing operating costs, or maximizing economic profit, in
the presence of constraints. Mathematically, such problems
can be casted as the following optimization problem:

min
u

Φp(u) := φ(u,yp(u)) (1a)

s.t. Gp,i(u) := gi(u,yp(u)) ≤ 0, i = 1, . . . , ng, (1b)

where u ∈ R
nu are the decision (or input) variables; yp ∈

R
ny are the measured output variables; φ : Rnu×R

ny → R

is the cost function to be minimized; gi : R
nu ×R

ny → R,
i = 1, . . . , ng, is the set of process-dependent inequality
constraint functions. The subscript p refer to a plant
quantity. These plant quantities are a priori unknown, but
their estimates can be obtained from process data.

Usually, a process model is available, for which the opti-
mization problem reads:

min
u

Φ(u, θ) := φ(u,y(u, θ)) (2a)

s.t. Gi(u, θ) := gi(u,y(u, θ)) ≤ 0, i = 1, . . . , ng. (2b)

where θ ∈ R
nθ is the vector of model parameters.

2.2 Two-Step Approach

Model parameters can be adjusted so that the plant
behavior is well captured. In the two-step approach, plant
measurements are used to identify some of the model
parameters at the current operating point by solving the
following least-squares problem:

θk := arg min
θ

‖yp(uk)− y(uk, θ)‖
2, (3)

where ‖ · ‖ is the Euclidean norm; yp(uk) are the plant
measurements at the current operating point uk, and
k represents the iteration number. The updated model
parameters are then used in the optimization problem (2)
to generate the new set of inputs uk+1. The procedure
is repeated until convergence. However, this approach
typically does not reach plant optimality in the presence
of structural plant-model mismatch (Forbes et al., 1994).

2.3 Constraint Adaptation

Certain optimization problems are mostly driven by the set
of active constraints. In these cases, one may reach near
optimal performance simply by tracking constraints. For
this, an RTO approach known as constraint adaptation
(CA) can be used (Chachuat et al., 2008). CA is an
iterative scheme that solves the following optimization
problem to reach the plant optimum u⋆

p.

min
u

Φm,k(u) := Φ(u, θ0) (4a)

s.t. Gm,k(u) := G(u, θ0) + εG
k ≤ 0, (4b)

where εG
k ∈ R

ng is the vector of zeroth-order modifier with
εGi,k as its i th component; and G ∈ R

ng is the vector

of model constraints Gi. At the k th RTO iteration, the
modifiers are computed as follows:

εG
k = Gp(uk)−G(uk, θ0), (5)

where Gp ∈ R
ng is the vector of plant constraints Gp,i.

Note that parameter adaptation is not required in CA as
the modifiers introduce bias corrections at each iteration,
which suffices to track the plant constraints. Hence, model
parameters are fixed at their nominal values θ0.

CA can yield optimality without requiring estimation of
plant gradients, which makes this scheme very attractive
for practical applications (Bunin et al., 2012). However,
many process optimization problems do require gradient
information to reach plant optimality. Therefore, in such
cases, modifier adaptation (MA) that additionally corrects
model gradients becomes more attractive RTO scheme.
Nonetheless, upon convergence, CA guarantees finding a
feasible input value for the plant constraints.

2.4 Influential Parameters

To understand the relationship between the model outputs
(such as the cost and the constraint functions) and the
model parameters, we introduce the concept of influential
and non-influential parameters. Consider the mapping y =
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f(θ), y ∈ R, θ ∈ R
nθ . In addition, consider the spaces I

and NI that are orthogonal complements to each other
such that I⊕NI = R

nθ , where ⊕ is the direct sum. Then,
the influential and non-influential spaces can be defined as

Definition 1. (Influential parameters (Smith, 2014)). On
the space NI, a parameter vector θ is said to be non-
influential for a function f ∈ R if |f(θ) − f(θ⋆)| < ǫ for
all θ and θ⋆ ∈ NI, where ǫ is a small positive scalar. The
orthogonal complement of NI is the space I of influential
parameters.

The influential and non-influential parameter spaces can
be found via active subspaces (Constantine et al., 2014).

2.4.1 Active Subspaces. Active subspace methods de-
termine the directions in parameter space that are most
influential, that is, the directions that cause most variabil-
ity in a model output (Constantine, 2015).

To find the active subspace for a given model output, the
following matrix C ∈ R

nθ×nθ is evaluated:

C =

∫

(

∇θf(θ)
)T(

∇θf(θ)
)

ρ dθ, (6)

where ∇θf(θ) ∈ R
1×nθ is the gradient vector of f with

respect to θ, ρ is the probability density function of θ
over the admissible bounded set Θ ⊂ R

nθ with ρ = 0
for θ /∈ Θ. Here, it is assumed that θ is the vector of
normalized parameters that are scaled according to their
range. Note that, since C is symmetric and positive semi-
definite, it diagonalizes as:

C = QΠQT, Π = diag(π1, . . . , πnθ
), (7a)

with π1 ≥ · · · ≥ πnθ
≥ 0; Q ∈ R

nθ×nθ is an orthonormal
matrix whose columns q1, . . . ,qnθ

are the normalized
eigenvectors of C.

It is shown in (Constantine, 2015) that, if the lth eigenvalue
πl is zero, then the directional derivative of the scalar
function f along the corresponding eigenvector is zero
everywhere in the domain Θ. That is,

(

∇θf(θ)
)

ql = 0 ∀θ ∈ Θ. (8)

Hence, when different components of the vector θ are
perturbed, the function f remains constant along the
direction ql.

If there exists a sufficient gap in the eigenvalue spectrum,
the following partitioning can be obtained,

Π =

[

Π1 0
0 Π2

]

, and Q = [Q1 Q2], (9)

where Π1 ∈ R
m×m and Q1 ∈ R

nθ×m with m ≤ nθ. The
block form is such that m ≪ nθ and πm+1 ≪ πm. Based
on this partitioning, we have the new rotated coordinate
variables ϑ1 ∈ R

m and ϑ2 ∈ R
nθ−m that are defined as:

ϑ1 := (Q1)
Tθ, and ϑ2 := (Q2)

Tθ. (10)

On average, the function f varies more dominantly due to
parametric variability and perturbations in the directions
described by ϑ1 than in the directions described by ϑ2.
The influential and non-influential spaces are given by the
column spaces of the matrices Q1 and Q2, respectively.

I = col
(

Q1

)

, and NI = col
(

Q2

)

, (11)

where col(·) is the column space.

Often, models are so complex that an analytical repre-
sentation of the matrix C is not possible. In such cases,

the influential and non-influential spaces are computed
by approximating the matrix C. The approximation Ĉ is
obtained by collecting N random samples of parameter θ
from the admissible set Θ using the probability density
ρ. For each sample i, the function gradient ∇θf(θi) is

approximated and constitutes the matrix Ĉ:

Ĉ =
1

N

N
∑

j=1

(

∇θf(θj)
)T(

∇θf(θj)
)

. (12)

The gradient values can be obtained by finite-differences
or by some of the Morris screening techniques presented in
(Lewis et al., 2016). The algorithm for computing active
subspaces via random sampling is detailed in (Constan-
tine, 2015).

3 MODEL ADEQUACY FOR CONSTRAINT
TRACKING

Certain processes are such that their optimal inputs u⋆
p

are determined solely by active constraints. For such pro-
cesses, the goal of the model-based optimization prob-
lem (2) is to match the plant constraints by iteratively
adapting the model parameters. If there exist parameter
values such that the model constraints match the plant
constraints in the whole input space, then it is possible
to compute the plant optimum via parameter adaptation
and optimization. Such a model is said to be globally
structurally correct. If not impossible, it is challenging to
verify the global structural correctness of the model. This
would require enormous experimental data with sufficient
information to verify that there exist values of the model
parameter θ such that the model constraints match the
plant constraints in the whole input space.

On the other hand, the modifier vector in (5) is tailored
to achieve plant-model matching of the constraints. The
addition of modifiers makes the model-based optimization
problem (4) locally structurally correct. Expressed differ-
ently, at the current operating point uk, there exists mod-
ifier values such that the constraint values for the model
and the plant match. Similarly, if there exists a set of
model parameters that make the model locally structurally
correct, then such a set can be adapted instead of the
modifiers. Hence, we search for a set of model parameters,
whose effect on the constraints is similar to that of the
modifiers.

This would require the model parameters to mirror the
behavior of the modifier εG

k . The behavior of the modifier
εG
k is captured by the following sensitivity equations:

∂Φm,k

∂εG
k

= 01×ng
, (13a)

∂Gm,k

∂εG
k

= Ing
, (13b)

where I is the identity matrix. Hence, it is desirable to
search for a set of mirror parameters, θG ∈ R

ng , such that,
at the given operating point uk, we have

∂Φ

∂θG
≈ 01×ng

, (14a)

∂G

∂θG
≈ diag

(

Ḡ1,k(θ
G
1 ), . . . , Ḡng,k(θ

G
ng
)
)

, (14b)
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where diag (·) represents a diagonal matrix with the diag-
onal entries Ḡi,k : R → R and θGi is the ith element of the
vector θG. The advantage of the mirror parameters θG is
that each of the constraint function Gi can be manipulated
independently by the corresponding component θGi .

To determine the vector of mirror parameters θG, the para-
metric dependencies of the cost and constraint functions
are investigated via influential spaces. At the operating

point uk, the set D
(Gi)
k is constructed for the constraint

Gi. This set is formed by finding the parameter directions
that are simultaneously present in the influential space of
Gi and in the non-influential spaces of the cost and the
rest of the constraints.

D
(Gi)
k := I

(Gi)
k

⋂

NI
(Φ)
k

j=ng
⋂

j=1

NI
(Gj)
k , j 6= i, (15)

where NI
(Φ)
k is the non-influential parameter space of

the cost function Φ; I
(Gi)
k and NI

(Gi)
k are the influential

and non-influential parameter spaces of the constraint

function Gi, respectively. Any direction in the set D
(Gi)
k

is such that it affects only the corresponding constraint
and not the cost and the rest of the constraints. Hence,
this direction can be used to construct the vector θG

that (approximately) satisfies (14). If the set D
(Gi)
k is non-

empty, then θGi can be constructed as

θGi = (d
(Gi)
k )Tθ, d

(Gi)
k ∈ D

(Gi)
k . (16)

Remark 1. The inactive (non-influential) subspaces are
not necessarily formed by the eigenvectors with zero eigen-
values. Hence, parametric perturbations along the direc-

tion d
(Gi)
k may still influence the cost and constraint func-

tions other than Gi. However, since the eigenvalues cor-
responding to the inactive subspaces are relatively small,
this influence is negligible. Moreover, some directions may

not strictly belong to the set D
(Gi)
k . These directions can

still be used to form mirror parameters if the Euclidean
norm of their projections on each of the influential and
non-influential spaces in (15) is relatively larger than their
projection on the respective complementary spaces.

In the case where the set D
(Gi)
k is empty, the model is un-

able to independently track the corresponding constraint
via parameter adaptation. A zeroth-order modifier term
can be added to that constraint to enable independent
tracking.

4 PROPOSED ADAPTATION STRATEGY

For the purpose of tracking constraints, we propose a two-
layer iterative approach. The top layer consists of model-
based optimization with the inputs u as decision variables,
while the bottom layer is the parameter estimation layer.

At the input value obtained in the optimization layer,
the direction sets in (15) are computed. One or more
constraints may have empty direction sets. Then, a con-
straint is selected that requires the largest number of
non-influential spaces to be dropped from (15) before its
direction set becomes non-empty. A zeroth-order modifier
is used to track the selected constraint instead of mirror
parameter. Subsequently, its non-influential space is reset

to R
nθ and the direction sets D

(Gi)
k for the rest of the

constraints are re-computed. The procedure is repeated
until each constraint either has a modifier or has a non-
empty set D

(Gi)
k for tracking. The estimation step mini-

mizes the Euclidean norm of those constraints for which
the setD

(Gi)
k is not empty. The mirror parameters resulting

from such directions are the decision variables for the
estimation step. The modifier values for the constraints
with empty direction sets are computed at the updated
parameter value obtained from parameter estimation. The
updated parameter values and the modifiers are sent to
the top layer. The two-layer procedure is repeated until
convergence. It is illustrated next via a simple numerical
example

Φ(u, θ) = θ3(u1 + u2) (17a)

G1(u, θ) = (θ1 + 3 θ2)u2 ≤ 0 (17b)

G2(u, θ) = (2 θ1 + 4 θ2)u1 + θ3 u2 ≤ 0, (17c)

with u = [u1, u2]
T and θ = [θ1, θ2, θ3]

T. At u1 = [1, 1]T,
the constraints G1 and G2 exhibit the influential parame-
ter spaces [1, 3, 0]T and [2, 4, 1]T, respectively. Since the
influential space of G2 interacts with the influential spaces
of the cost Φ and the constraint G1, the zeroth-order
modifier εG2,k is added to the constraint G2 and we set

its non-influential space to R
3. The influential space of

the constraint G1 does not interact with the influential
space of the cost. Therefore, constraint G1 is enforced
via parameter adaptation within its influential space. Al-
though adapting parameters along the parameter direction
[1, 3, 0]T also influences the constraint G2, this influence
is compensated by the modifier εG2,k that independently
tracks the constraint. The parameter estimation step at
the 1st RTO iteration for the numerical example then
reads

(θG1,k) := argmin
θG
1

||Gp,1(u1)−G1(u1, θ)||
2,

with θG1 := [1, 3, 0]Tθ.

In the estimation step, the parameters directions that are
orthogonal to [1, 3, 0]T are fixed at their current value. The
adapted parameter θ1 is obtained by transforming θG1,k and
the fixed directions back to the original coordinates. The
updated parameter θ1 is then utilized in the optimization
step with the modifier εG2,2 to obtain u2. At u2, the
influential parameter spaces of the cost and constraints
are re-computed via active subspaces, and the procedure
is repeated until convergence. Note that it is recommended
to control (limit) the step length for both the optimization
and the parameter estimation steps to avoid oscillatory
behavior.

5 SIMULATION STUDY

We investigate the run-to-run optimization of the semi-
batch reactor originally proposed by Ruppen et al. (1997).
The reactions occuring in the diketene-pyrrole reaction
system are

A+B
k1−→ C, 2B

k2−→ D, B
k3−→ E, C + B

k4−→ F.

Structural plant-model mismatch is considered by ignoring
the third and fourth reactions, that is, by taking k3 =
0 and k4 = 0 in the model used for optimization. In
addition, it is assumed that the model parameters k1 and
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Table 1. Kinetic parameter values for the diketene-pyrrole reaction

Parameter Plant value Nominal value Model uncertainty
Probability
distribution

k1(Lmol−1min−1) 0.053 0.053 [0.0011, 0.2120] uniform

k2(Lmol−1min−1) 0.128 0.128 [0.0026, 0.5120] uniform

k3(min−1) 0.028 0 - -

k4(Lmol−1min−1) 0.001 0 - -
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Fig. 1. Diketene-pyrrole reaction. Top plots: Optimal
input profile (solid line: plant optimum; dashed line:
model optimum). Middle plots: Model constraints
with the model optimal input. Bottom plots: Solid
lines: plant constraints with the plant optimal input.
Dashed lines: plant constraints with the model opti-
mal input.

k2 are uncertain, and follow a uniform distribution. The
parameter values used to represent both the plant and the
model are listed in Table 1. The objective is to maximize
the yield of product C, while meeting input constraints as
well as terminal constraints on the concentrations of the
reactant B and the side product D:

max
F (t)

J := cC(tf )V (tf ) (18)

s.t. model in (Chachuat et al., 2009),

cB(tf ) ≤ cmax
B , cD(tf ) ≤ cmax

D , 0 ≤ F (t) ≤ Fmax,

where cA, cB, cC and cD represent the concentrations of
the species A, B, C and D, respectively. V is the reactor
volume, F is the inlet flowrate of species B and cinB is the
concentration of B in the feed. The values of the bounds
cmax
B and cmax

D are 0.025 and 0.15, respectively. The values
of the other parameters and of the initial concentrations
are taken from Chachuat et al. (2009).

The NLP formulated to solve this optimization prob-
lem contains 50 time stages. Each stage corresponds to
piecewise-constant values of the input F (t). The profiles
of the optimal input for both the plant and the model
(at the nominal parameter value) are shown in the top
plot of the Figure 1. Clearly, the optimal profiles obtained
for the model and the plant are very different. Model
constraints at the model optimal input are shown in the
middle plots of Figure 1. The bottom plots of Figure 1
shows the plant constraints for both the plant and the

model optimal inputs. As can be seen in Figure 1, the
concentration of reactantB at final time is not at its bound
when the model optimal input is applied, whereas it lies
at the bound when the plant optimal input is applied. The
plant yield of product C obtained with the model optimal
input is 0.3875, which is much lower than the plant optimal
yield of 0.5081.

The input and output profiles reached upon convergence
for the two-step approach, constraint adaptation and the
proposed approach are shown in Figure 2. The two-step
approach leads to an improvement in the yield of C from
one batch to another but converges to a considerably sub-
optimal value of 0.4414, whereas constraint adaptation
leads to a near optimal yield of 0.5076. The small optimal-
ity gap is the result of not adapting the gradient modifiers.
The proposed adaptation strategy converges to the plant
optimum.

In the proposed strategy, a single parameter, which is
a linear combination of k1 and k2, is adapted to track
the terminal constraint on cB. This linear combination
is such that (i) it has a large norm when projected on
the influential space of the terminal constraint on cB
and thus can be used for tracking this constraint, and
(ii) it lies perfectly in the non-influential space of the
cost of Problem (18) and thus will not affect the cost.
However, this direction does affect the terminal constraint
on cD, which implies that, when the linear combination
of parameters is adapted, it also influences the terminal
constraint on cD. However, since the terminal constraint
on cD is tracked by a modifier, the influence of parameter
adaptation on this constraint is irrelevant. Note that no
modifier is added to the constraint on cB. The evolution
of the model parameters over the RTO iterations is shown
in Figure 3.

6 CONCLUSIONS

This paper has highlighted various model correction
strategies to determine optimal operating conditions by
exploiting process data. The advantages and disadvan-
tages of model parameter adaptation compared to mod-
ifier adaptation have been discussed. To capitalize on the
advantages of both, a novel adaptation strategy has been
proposed that searches for parameters capable of mirroring
the effect of modifiers. Modifiers are then added only when
such mirror parameters are not found. A simulation study
of run-to-run batch optimization illustrates that a combi-
nation of mirror parameters and modifiers can successfully
track optimality conditions.
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