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Abstract: This paper presents a scheme for dual robust control of batch processes under
parametric uncertainty. Some recently proposed approaches can be used to tackle this problem,
however, this will be done at the price of conservativeness or significant computational burden.
In order to increase computational efficiency, we propose a scheme that uses parametrized
conditions of optimality in the adaptive predictive-control fashion. The dual features of the
controller, i.e., balance between the control moves that excite the system to improve accuracy of
the parameter estimation and between the moves that optimize process performance, is realized
through scenario-based (multi-stage) approach, which allows for modeling of the adaptive robust
decision problem and for projecting this decision into predictions of the controller. The proposed
approach is illustrated on a case study from batch membrane filtration.
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1. INTRODUCTION

In this paper we consider a real-time implementation of a
controller that solves the dynamic optimization problem
of the form:

min
u(t),tf

J := min
u(t),tf

∫ tf

0

F0(x(t),p) + Fu(x(t),p)u(t) dt (1a)

s.t. ẋ(t) = f0(x(t),p) + fu(x(t),p)u(t), (1b)

x(0) = x0, x(tf) = xf, (1c)

u(t) ∈ [uL, uU ], (1d)

where t is time with t ∈ [0, tf], x(t) is an n-dimensional
vector of state variables, p is an m-dimensional vector of
time-invariant model parameters, u(t) is a (scalar) manip-
ulated variable, F0(·), Fu(·), f0(·), and fu(·) are contin-
uously differentiable functions, x0 represents a vector of
initial conditions, and xf are specified final conditions. We
note here that an inclusion of multi-input and/or state-
constrained cases is a straightforward extension but it is
not considered in this study for the sake of simplicity of
the presentation. We also note that the specific class of
input-affine systems is a suitable representation for a large
variety of the controlled objects (Hangos et al., 2006).

The presented problem was studied in many previous
works using on-line or batch-to-batch adaptation of the
optimality conditions (Francois and Bonvin, 2013) or by
design of robust controller for tracking the conditions of
optimality (Nagy and Braatz, 2003). Recently, several ad-
vanced robust strategies were presented in the framework
of model predictive control (Lucia et al., 2013; Houska
et al., 2017). This paper proposes adaptation of the afore-
mentioned approaches to the problem of robustly optimal
control of batch processes.

We base our approach on parameterization of the opti-
mal controller using the conditions of optimality given by
Pontryagin’s minimum principle. This step reduces com-
putational burden when projecting the parametric uncer-
tainty in controller performance and feasibility. In order
to improve of the controller, we use on-line parameter
estimation. Finally, we derive the dual controller that
considers adaptation of the optimal control inputs based
on projected uncertainty and on prediction of the future
learning of the controller.

2. PRELIMINARIES

2.1 Conditions for Optimality

Pontryagin’s minimum principle can be used (Srinivasan
et al., 2003) to identify the optimal solution to (1) via
enforcing the necessary conditions for minimization of a
Hamilton function (Hamiltonian)

H(x(t),λ(t),p, u(t), µL(t), µU (t)) := µL(uL − u)

+µU (u − uU ) + F0 + λTf0
︸ ︷︷ ︸

H0(x(t),λ(t),p)

+
(
Fu + λTfu

)

︸ ︷︷ ︸

Hu(x(t),λ(t),p)

u, (2)

where λ(t) is a vector of adjoint variables, and µL(t) and
µU (t) are Lagrange multipliers associated with bounds on
control input. The minimization is carried out such that

min
u(t),ν,tf,µL(t)≥0,µU (t)≥0

H (3a)

s.t. ẋ(t) = f0 + fuu(t), x(0) = x0, x(tf) = xf, (3b)

λ̇ = −
∂H

∂x
, λ(tf) = ν, (3c)

µL(uL − u(t)) = 0, µU (u(t)− uU ) = 0, (3d)
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where ν are Lagrange multipliers that correspond to end-
point equality constraints.

The necessary conditions for optimality of (3) can be
stated as (Srinivasan et al., 2003): ∀t ∈ [0, tf]

∂H

∂u
:= Hu(x(t),λ(t),p)− µL(t) + µU (t) = 0, (4)

H(x(t),λ(t),p, u(t), µL(t), µU (t)) = 0, (5)

H0(x(t),λ(t),p) = 0, (6)

x(tf)− xf = 0. (7)

The condition (5) arises from the transversality, since the
final time is free (Pontryagin et al., 1962), and from the
fact that the optimal Hamiltonian is constant over the
whole time horizon, as it is not an explicit function of
time. The condition (6) is the consequence of the former
two. Since the Hamiltonian is affine in input variable
(see (2)), the optimal trajectory of control variable is either
determined by active input constraints or it evolves inside
the feasible region. Let us first consider the latter case.

Assume that for some point t we have Hu(·) = 0 and
uL < u(t) < uU . It follows from (4) that the optimal
control maintains Hu(t) = 0. Such control is traditionally
denoted as singular. Further properties of the singular
arc, such as switching conditions or state-feedback control
trajectory can be obtained by differentiation of Hu(·)
with respect to time (sufficiently many times) and by
requiring the time derivatives of Hu(·) to be zero. The
time derivatives of H(·) and H0(·) are equal to zero
as well. Earlier results on derivation of optimal control
for input-affine dynamic systems (Jönsson and Träg̊ardh,
1990; Srinivasan et al., 2003) suggest that it is possible to
eliminate adjoint variables from the optimality conditions
and thus arrive at analytical characterization of switching
conditions and optimal control for singular and saturated-
control arcs.

As the optimality conditions obtained by the differenti-
ation w.r.t. time are linear in the adjoint variables, the
differentiation of Hu (or H0) can be carried out until it
is possible to transform the obtained conditions to a pure
state-dependent switching function S(x,p). It is usually
convenient to use a determinant of the coefficient matrix of
the equation system Aλ = 0 for this. The optimal control
is then given as a step-wise strategy (Paulen et al., 2015)

u∗(t,π) :=







uL, t ∈ [0, t1], S(x(t),p) > 0,

uU , t ∈ [0, t1], S(x(t),p) < 0,

us(x(t),p), t ∈ [t1, t2], S(x(t),p) = 0,

uL, t ∈ [t2, tf], S(xf,p) < 0,

uU , t ∈ [t2, tf], S(xf,p) > 0,

(8)

xf = x(t2) +

∫ tf

t2

f0(x(t),p) + fu(x(t),p)u
∗(t) dt,

(9)

where π := (pT , t1, t2, tf)
T is the vector that parame-

terizes the optimal control strategy. The singular control
us(x(t),p) is found from

dS

dt
=

∂S

∂xT

dx

dt
=

∂S

∂xT
(f0 + fuus) = 0, (10)

as

us(x(t),p) = −
∂S

∂xT
f0

/
∂S

∂xT
fu, (11)

Note that the presented optimal strategy determines im-
plicitly the switching times t1 from saturated to singular
control and t2 from singular to saturated control terminal
time as well as the terminal time tf.

In case the switching function S(x,p) is unidentifiable by
the aforementioned procedure, the differentiation ofHu (or
H0) is carried out until the manipulated variable appears
explicitly in one of the optimality conditions. It is then
possible to devise an expression for singular control that is
independent of adjoint variables. This is done by reducing
the adjoint-affine system to triangular form from which the
unknown adjoint variables can be expressed as functions
of state variables.

3. IMPLEMENTATION OF OPTIMAL CONTROL

As the optimal control structure is a function of uncertain
parameters of the process model, the uncertainty should be
taken into account when devising a real-time implementa-
tion of the optimal control on the process. We will assume
that the uncertainty is bounded as p ∈ P := [pL,pU ] and
has a nominal realization p0.

3.1 Implementation via robust control

Given the optimal control sequence (8), it is possible to
enclose all the reachable states x(t,P ) ∋ x(t,p), ∀p ⊃ P
of (1b) (Villanueva et al., 2015) such that one can identify
realization of optimal control inputs sequence (e.g., u∗ =
{uL, us(x(t),p), u

U}) and switching times of the control
structure as functions of uncertain parameters t1(p), t2(p),
and tf(p), ∀p ∈ P . One can then formulate a semi-infinite
program similar to Stuber and Barton (2011) or some
related problem (e.g., using polynomial expansion (Houska
et al., 2017)), to determine the parameters of the optimal
control structure that lead to the best performance in
the worst case. For the parameterized optimal control
sequence, we can solve

min
t1,t2,tf

‖J (P )− J (p0)‖
2
2 (12)

s.t. ẋ(t) = f0(x(t),p) + fu(x(t),p)u
∗, ∀p ∈ P, (13)

x(tf,P ) ∋ xf, (14)

for a given x(0) = x0 and P , where we propose to
minimize variance of the objective under all the possi-
ble realizations of the measurement noise, but we note
that other formulations are possible, e.g., to optimize for
mean or worst-case realization. Note that this approach
represents an open-loop strategy, i.e., it does not con-
sider feedback. As a consequence, it will result in infea-
sibility w.r.t. terminal conditions, as the terminal state
constraints can only be enforced if there exists a full-
state measurement. A possible remedy to this issue lies
in receding horizon approach with shrinking horizon. This
can be also implemented using multi-stage optimization
approach (Lucia et al., 2013), which takes explicitly into
account the presence of feedback via full-state measure-
ment and thus avoids conservatism to some extent.
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Fig. 1. Scenario tree representation of the uncertainty
evolution for a multi-stage controller.

3.2 Implementation via adaptive robust control

As shown in Adetola et al. (2009) and in Lucia and Paulen
(2014), in order to further reduce conservatism of the
multi-stage (robust) scheme, parameter estimation can be
used for exploitation of data gathered along the process
run. The employed parameter estimation scheme should
take into account noise in measurements and, if applied
recursively for each newly gathered measurements set, it
should result in a sequence of the confidence intervals

P k ⊆ P k−1 ⊆ · · · ⊆ P 1 ⊆ P 0 ⊆ P . (15)

A possible estimation procedure is outlined in Appendix A.
The problem (12) can then be resolved with the initial
state conditions x(k) = xk and with updated parameter
bounds P k in shrinking-horizon fashion. Once the optimal
value of the objective function of (12) reaches ‖J (P ) −
J (p0)‖

2
2 < ε, the calculated control actions can be im-

plemented, possibly with a feedback scheme (Francois and
Bonvin, 2013), until the terminal conditions are met.

3.3 Implementation via dual robust control

Several recent works (Thangavel et al., 2015; Hanssen and
Foss, 2015; La et al., 2017) presented novel implicit and
explicit schemes to dual control based on receding-horizon
control. We adapt the implicit dual-control methodology
presented in Thangavel et al. (2015) in this study as,
despite being computationally more demanding, it re-
quires no a priori tuning of the objective regarding the
importance of experiment-design objective. It models the
evolution of the uncertainty in the states and parameters
as a tree of discrete realizations of the uncertainty

min
t
j

1
,t

j

2
,t

j

f
,∀j∈I

u
j

k
,∀k≤Nr,∀j∈I

‖J (p)− J (p0)‖
2
2 (16a)

s.t. ∀j ∈ I :

ẋj = f0(x
p(j), p

r(j)
k ) + fu(·)u

j
k, ∀k < Nr, (16b)

ẋj = f0(x
p(j), p

r(j)
k ) + fu(·)u

j,∗, ∀k ≥ Nr, (16c)

uj
k = ul

k if x
p(j)
k = x

p(l)
k , ∀l ∈ I, (16d)

p
r(j)
k+1 = h(x

p(j)
k , uj

k,p
r(j)
k ), ∀k < Nr, (16e)

xj(tf) = xf, (16f)

where J (p) := (J (p
r(1)
Nr

),J (p
r(2)
Nr

), . . . ,J (p
r(ns)
Nr

))T . We
adopt the notation from Lucia and Paulen (2014); Jang
et al. (2016) where index k denotes the sample-and-hold
value of a variable on the interval [tk, tk+1], j represents
a particular realization of uncertainty and p(j) is the
realization at parent node of the scenario tree 1. The
tree contains ns scenarios that correspond to index set
I of the uncertainty propagation through dynamics of
the system. The function h(·) denotes the estimation and
bounding equations (A.4) and (A.7). The value of Nr

represents the length of the so-called robust horizon, which
marks the stage, until which the tree is considered to
branch. Note that this models a possible variability in
the parametric uncertainty and, in proposed methodol-
ogy, it models the estimation of the bounds of uncertain
parameters. Note also that the control inputs are free
until the stage Nr—they only need to fulfill the non-
anticipativity constraints (16d)—so the proposed scheme
shows a significant reduction of the number of degrees of
freedom of the optimization as opposed to the situation,
where only the multi-stage approach (equivalent under
some assumptions to robust dynamic programming) would
be used without the parameterized solution to nominal
optimal control problem. The value of Nr should be set
as big as possible, ideally until the stage when the earliest
possible switching of the optimal control input occurs. A
similar approach is utilized for uncertainty propagation in
set-membership context by Yousfi et al. (2017). However,
as the simulation experiments have showed for standard
multi-stage predictive control Lucia et al. (2013), Nr = 1
or Nr = 2 is a practical and sufficient choice w.r.t. to the
performance of the scheme in most cases.

A possible interpretation of the presented dual-control
scheme is that:

• the optimal excitation of the system, which results in
improved precision of parameter bounds, is obtained
as a consequence of minimization of the variance
of the objective function under uncertainty and by
freeing the (initial) control moves on the robust
horizon from the optimality conditions of (1);

• the optimality of each scenario is guaranteed by
control parametrization using optimality conditions
and from principle of dynamic programming, which
means that, despite initial control moves are not fixed,
the control moves until the end of the horizon are
optimal w.r.t. state values of each scenarios.

Note that because of the switching nature of the opti-
mal control strategy, the proposed problem might show
discontinuity as a consequence of activation of the input
constraints based on uncertain parameters (S(x(t),p)).
Simply speaking, it may happen that for a subset of P
the resulting optimal sequence commences with u(t) = uL

and vice versa for other subset of P . This can be remedied
by an adaptation of the continuous-formulation technique
for scheduling presented in de Prada et al. (2011).

4. CASE STUDY

We consider a case study of time-optimal control of a batch
diafiltration process from Paulen et al. (2012). The scheme
of the plant is shown in Fig. 2. The goal is to process
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Fig. 2. Nanodiafiltration process scheme.

a solution with initial volume (V0) that is fed into the
feed tank at the start of the batch and that comprises
two solutes of initial concentrations c1,0 and c2,0. At the
end of the batch, the prescribed final concentrations c1,f
and c2,f must be met. The transmembrane pressure is
controlled at a constant value. The temperature of the
solution is maintained around a constant value using a
heat exchanger. The manipulated variable u(t) is the ratio
between fresh water inflow into the tank and the permeate
outflow qp that is given by

qp = γ1 ln

(
γ2

c1c
γ3

2

)

= γ1 (ln(γ2)− ln(c1)− γ3 ln(c2)) .

(17)
and is measured at intervals of one minute with the as-
sumed measurement noise that is bounded by σ = 1 ×
10−6m3/h. The model of the permeate flux can be reduced
to another widely used limiting flux model if γ3 = 0,
so this case study offers to study both parametric and
non-parametric plant-model mismatch. The measurement
of qp is used for inferring the values of the parameters
γ1, γ2, γ3. Note that this leads to linear parameter esti-
mation problem with the regressor c = (1, ln(c1), ln(c2))

T

and parameters p̂ = (γ1 ln(γ2), γ1, γ1γ3)
T , from which the

values of γ1, γ2, γ3 follow directly. Concentrations of both
components c1(t) and c2(t), where the first component
is retained by the membrane and the second one can
freely pass through, are measured as well and will be
assumed to be perfectly known. This is only assumed for
simplicity. Should an uncertainty be considered in mea-
sured values of c1(t) and c2(t), an error-in-variables ap-
proach (Söderström, 2007) can be adopted for parameter
estimation.

The objective is to find a time-dependent input function
u(t), which guarantees the transition from the given initial
c1,0, c2,0 to final c1,f, c2,f concentrations in minimum time.
This problem can be formulated as:

J ∗ = min
u(t)∈[0,∞)

∫ tf

0

1 dt, (18a)

s.t. ċ1 =
c21qp
c1,0V0

(1− u), c1(0) = c1,0, c1(tf) = c1,f (18b)

ċ2 = −
c1c2qp
c1,0V0

u, c2(0) = c2,0, c2(tf) = c2,f (18c)

qp = γ1 (ln(γ2)− ln(c1)− γ3 ln(c2)) . (18d)

The parameters of the problem are c1,0 = 10mol/m3,
c1,f = 200mol/m3, c2,0 = 100mol/m3, c2,f = 0.01mol/m3,
V0 = 0.1m3, γ1 = 3600 × 4.79 × 10−6m/h γ2 =
319mol/m3, γ3 = 0.2. The extremal values of u(t) stand
for a mode with no water addition, i.e., pure filtration,
when u(t) = 0 and pure dilution, i.e., a certain amount of
water is added at a single time instant, u(t) = ∞.

The nominal (parametrized) optimal control of this pro-
cess can be identified using Pontryagin’s minimum princi-
ple (Pontryagin et al., 1962) as:

u∗(t,π) =







0, t ∈ [0, t1], S(x(t),p) > 0,

∞, t ∈ [0, t1], S(x(t),p) < 0,

us, t ∈ [t1, t2], S(x(t),p) = 0,

0, t ∈ [t2, tf], S(xf,p) < 0,

∞, t ∈ [t2, tf], S(xf,p) > 0,

(19)

where the singular control and the respective switching
function can be found explicitly (Paulen et al., 2012) as

us(x(t),p) :=
1

1 + γ3
, (20)

S(x(t),p) := γ1 (ln(γ2)− ln(c1)− γ3 ln(c2)− γ3 − 1) .
(21)

For the given parameters of the problem, the optimal
control sequence is u∗ = {0, 0.8333,∞} with switching
times t1 = 2.2087 h and t2 = tf = 3.17 h.

We consider the parametric uncertainty to be given by:

P :=






[γL
1 , γ

U
1 ]

[γL
2 , γ

U
2 ]

[γL
3 , γ

U
3 ]




 =





[4.65, 4.85]× 10−63600m/h

[300, 700]mol/m3

[0.15, 0.3]



 .

(22)
The nominal values of parameters are taken as mid(P ).
With respect to the nominal values the uncertainties in
parameters are 2.11% for γ1, for 40% γ2, 33.33% for γ3.
This is assumed to mimic practical considerations, where
γ1 represents a mass-transfer coefficient, whose value is
usually known with relatively high accuracy. It is clear
that the real-time optimality of the operation is strongly
influenced by accuracy of the estimation of the parame-
ters γ2 and γ3. Preliminary numerical tests with optimal
experiment design (OED) methodology (Gottu Mukkula
and Paulen, 2017) showed that for the most accurate esti-
mation of γ2 the manipulated variable u(t) = 0 and, on the
other hand, the best estimation accuracy of γ3 is reached
when u(t) = 1. This shows mutual benefit of the optimal
control strategy u∗ = {0, 0.8333,∞} and estimation of γ2,
and a potential conflict of accurate estimation of γ3 and
the optimal control policy. This can also be seen from (17)
and (18c), where it is clear that when the (nominally)
optimal controller applies u(t) = 0, the parameter γ3 is
unidentifiable as the concentration c2(t) remains constant.
The OED studies also showed that the best time to excite
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Fig. 3. Comparison of control profiles of different con-
trollers.

the plant is in the beginning of the operation. This stems
from the absolute error of the measurement (see (A.2)) and
from the fact that the measured permeate flux is highest
in the beginning of the operation and drops dramatically
with the increase of concentration c1(t). For the estimation
procedure described in Appendix A we have used β = 0.25.

Application of the proposed controllers results in the
control profiles that are shown in Fig. 3. Both adaptive
and dual controller reach almost the same performance as
the (hypothetic) optimal controller, which has a perfect
knowledge of the true values of parameters, which comes
as a consequence of the constant singular control, the
nature of the singular control in general (∂H/∂u = 0,
see the discussion in Srinivasan et al. (2003)) and the
ability of the controllers to guess the value of t1 relatively
well despite the imprecise estimates. The importance of
this guess can be documented by the performance of the
min-max robust controller (cyan curve in Fig. 3), where
even though the controller finds a value of singular control
that is close to the optimal one, the early switch to the
singular arc results in poor performance. Performance of
the dual controller (tf = 3.20h) is slightly better than
the performance of the adaptive controller (tf = 3.22h).
This arises from the probing action that is performed
by the dual controller at the beginning of the batch,
where the control-moves sequence of the dual controller
is {u1, u2, u3, . . . } := {0, 1, 0, . . .}.

Figure 4 shows the mean and the variance in the perfor-
mance of the studied controllers in 1,000 simulations with
different true values of parameters p taken from uniform
grid of P . It is clear that adaptive and dual controller
reach performance very close to the optimal one. They
also greatly reduce the variance of the min-max or nominal
controller (not shown for brevity). It is also clear for this
case study that for the actual realization of the control
of this plant, a dual controller would not be essential. So
in this case, the presented methodology would serve in
the design phase to assess the need of advanced robust
adaptive controller.
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Fig. 4. Mean and variance of performance of the different
controllers. The same color coding as in Fig. 3 is used.

5. CONCLUSION

We have presented a novel methodology for dual robust
controller design for the (real-time) optimal control of
batch processes. The controller achieves the dual action by
explicit consideration of the effects of the future exciting
control signal on the performance of the plant. The crucial
step is the parameterization of the (open-loop) optimal
controller. This allows for adaptation and implementation
of the dual robust control strategies devised earlier in the
literature. The benefits of the approach were shown in the
case study on batch membrane filtration. Set-membership
estimation was used for the parameter estimation, as a
technique that can provide guaranteed bounds on the para-
metric uncertainty. The future work will concentrate on
the experimental validation of the presented methodology
at the laboratory membrane plant.
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Söderström, T. (2007). Errors-in-variables methods in
system identification. Automatica, 43(6), 939 – 958.

Srinivasan, B., Palanki, S., and Bonvin, D. (2003). Dy-
namic optimization of batch processes: I. Characteriza-
tion of the nominal solution. Computers & Chemical

Engineering, 27(1), 1–26.
Stuber, M.D. and Barton, P.I. (2011). Robust simula-
tion and design using semi-infinite programs with im-
plicit functions. International Journal of Reliability and
Safety, 5(3-4), 378–397.

Thangavel, S., Lucia, S., Paulen, R., and Engell, S. (2015).
Towards dual robust nonlinear model predictive control:
A multi-stage approach. In Proc. Amer Contr Conf,
428–433.

Villanueva, M.E., Houska, B., and Chachuat, B. (2015).
Unified framework for the propagation of continuous-
time enclosures for parametric nonlinear odes. Journal
of Global Optimization, 62(3), 575–613.

Yousfi, B., Rassi, T., Amairi, M., and Aoun, M. (2017).
Set-membership methodology for model-based progno-
sis. ISA Transactions, 66(Supplement C), 216 – 225.

Appendix A. SET-MEMBERSHIP ESTIMATION

We will focus on the case when the model is linear in
parameters such that

ŷ(p) = cTp, (A.1)

where ŷ is the prediction of the plant output y and c is
a so-called regressor vector. The linearity of the model in
parameters is not restrictive, the presented methodology
applies to systems that are non-linear in parameters too,
and is considered for simplicity. We will further assume
that the measurement noise is bounded so that

|y − ŷ(p)| ≤ σ. (A.2)

Under these assumptions a recursive set-membership pa-
rameter estimation scheme was presented in Fogel and
Huang (1982); Chabane et al. (2014), which over-bounds
the set of all parameter values that satisfy (A.2) as an
ellipsoid

(p− p̂)TV −1(p− p̂) ≤ 1, (A.3)

where p̂ is the expected true value of the parameters and
V is parameter covariance matrix. Upon receiving a new
measurement, p̂ and V are updated by

p̂+ = p̂+
βd

1 + βg
V c̃, (A.4)

V + =

(

1 + β −
βd2

1 + βg

)(

V −
β

1 + βg
V c̃c̃TV

)

,

(A.5)

where

c̃ := c/σ, g := c̃TV c̃, d := y/σ − c̃T p̂. (A.6)

The parameter β ∈ (0, 1) can be selected in order to
minimize trace or determinant of the covariance matrix
V (Fogel and Huang, 1982). The updated bounds of
parameters can be found via

P+ :=
[

p̂+ − diag
(

V
1

2

+

)

, p̂+ + diag
(

V
1

2

+

)]

. (A.7)

We note that it is also equally possible to form a series of
linear programs that would bound the parameter values
that are consistent with the measurements. This might
improve accuracy of the estimates. For the implementation
of the dual controller, optimality conditions of the linear
program would be embedded into the problem (16).
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