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Abstract: High variability and unreliable expectations on product yields substantially hinder the 

industrialization of microorganism derived biochemicals as they present a risk to the profitability and 

safety of the underlying systems. Therefore, in this work, we propose an optimization approach to 

determine the lower and upper product yield expectations for the sustainable production of C-

phycocyanin. Kinetic modeling is adopted in this study as it is an outstanding tool for fast prototyping, 

prediction and optimization of chemical and biochemical processes. On the upside, parameters in 

bioprocess kinetic models are used as a simplification of complex metabolic networks to enable the 

simulation, design and control of the process. On the downside, this conglomeration of parameters may 

result in significant model uncertainty. To address this shortcoming, we formulate a bilevel max-min 

optimization problem to obtain the worst-case scenario of our system given the uncertainty on the model 

parameters. By constructing parameter confidence ellipsoids, we determined the feasible region along 

which the parameters can minimize the system’s performance, while nutrient and light controls are used 

to maximize the biorenewable production. The inner minimization problem is embedded by means of the 

optimality conditions into the upper maximization problem and hence both are solved simultaneously. 

Through this approach, we determined pessimistic and optimistic scenarios for the bioproduction of C-

phycocyanin and hence compute reliable expectations on the yield and profit of the process. 

Keywords: Uncertain dynamic systems, optimal control, bilevel programming, bioprocess optimization. 



1. INTRODUCTION 

C-phycocyanin is a blue antenna pigment used to enhance the 

photosynthetic efficiency of microorganisms such as 

cyanobacteria and red algae (Eriksen 2008). Because of its 

distinctive anti-oxidant, neuroprotective and anti-

inflammatory properties, it has been recognized as a high-

value bioproduct with great potential in pharmaceutical 

industry (Chen et al. 2013; Kuddus et al. 2013; Romay et al. 

2003). In addition, it can be commercialized in cosmetic and 

food industries since it is a natural alternative to toxic 

synthetic pigments (Chen et al. 2013). Although C-

phycocyanin can be synthesized by different microorganisms, 

currently Arthrospira platensis, a type of cyanobacteria, is 

considered as the primary species for C-phycocyanin 

production due to its high phycocyanin content which can 

accumulate up to 18% of cell dry weight (del Rio-Chanona et 

al. 2016).  

So far, extensive research has been investigated to identify 

the metabolic mechanisms of C-phycocyanin synthesis in A. 

platensis. For example, several studies have been conducted 

recently to demonstrate that nitrate concentration and 

illumination intensity are the most important factors 

determining both the content and the productivity of 

phycocyanin (Xie et al. 2015; del Rio-Chanona et al. 2015). It 

is claimed that as phycocyanin is a light-harvesting pigment, 

a lower light intensity can stimulate its accumulation since 

phycocyanin can help cyanobacteria to collect light energy 

for their photosynthesis (Kuddus et al. 2013; Sun et al. 2006). 

Meanwhile, effects of nitrate concentration on phycocyanin 

production have also been well studied, and it is declared that 

the presence of nitrate is necessary for phycocyanin 

accumulation, as phycocyanin is an intracellular nitrogen 

storage which can be consumed by cells in nitrogen-limiting 

conditions (Eriksen 2008; Chen et al. 2013). 

However, to accomplish the industrialization of phycocyanin 

production, two requirements must be satisfied. Firstly, it is 

necessary to identify the optimal operating conditions for 

phycocyanin synthesis and biomass growth so that the 

process efficiency can be maximised. Secondly, a final 

phycocyanin content higher than 10% of cell dry weight has 

to be guaranteed; otherwise the cost of pigment downstream 

separation will be significantly increased. In order to address 

the two requirements, advanced mathematical models have 

become an indispensable tool to determine the process 

optimal operating conditions for long-term cyanobacteria 

biomass cultivation and C-phycocyanin production. 

Recently, a kinetic model capable of simulating 

cyanobacterial biomass growth and phycocyanin production 

under different light intensities and nitrate concentrations has 

been proposed (del Rio-Chanona et al. 2015). However, 

given the fact that a kinetic model is a simplification of a 

highly complex metabolic network which involves a 

significant amount of metabolic reactions, the uncertainty of 

a kinetic model is in general large and the process 

optimization results heavily rely on the accuracy of the 
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model. As a result, for microorganism related fermentation 

processes, it is essential to take into account the effects of 

model uncertainty on process prediction and optimal control. 

At present, significant attention has been given to process 

analysis, control and design with the embedding of model 

uncertainty (Pollock et al. 2013; Biwer et al. 2005; Rosengart 

et al. 2017), and different methods such as ensemble 

modeling has been adopted to optimize the performance of 

traditional fermentation processes (Guterman & Ben-Yaakov 

1990; Liu & Gunawan 2017).  

Nonetheless, few efforts has been made on microalgae 

derived biorenewables production systems, leaving an 

unresolved issue for the synthesis of highly demanded 

biochemicals such as renewable biofuels and sustainable 

high-value bioproducts (e.g. food supplement). Therefore, in 

order to address this challenge, in this study C-phycocyanin 

is selected as the representative and a bilevel programming 

framework is designed to optimize its production under a fed-

batch long-term operation system.  

2. CYANOBACTERIAL C-PHYCOCYANIN 

PRODUCTION  SYSTEM 

2.1 Process dynamic model 

In our recent work, a kinetic model has been constructed to 

simulate both A. platensis biomass growth and C-

phycocyanin production (del Rio-Chanona et al. 2015). This 

model is therefore adopted in the current study for prediction 

and optimization purposes. A brief introduction of this model 

is listed in this section. 

The kinetic model is modified from the Monod model to 

simulate biomass growth (Eq. (21)), nitrate consumption (Eq. 

(22)), and C-phycocyanin production (Eq. (23)). In these 

equations, the specific biomass growth rate, rM, is assumed to 

be a function of nitrate concentration and light intensity (Eq. 

(24)). Effects of light intensity on biomass growth and C-

phycocyanin can be simulated by the Abia model shown in 

Eq. (25) and Eq. (26), respectively, since the Abia model is 

able to capture the performance of both photo-limitation and 

photo-inhibition, as well as photo-saturation.  
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where x is biomass concentration, u0 is cell specific growth 

rate coefficient, N is nitrate concentration, Kn is nitrate half-

velocity coefficient, KNp is nitrate half-velocity coefficient for 

phycocyanin consumption, ud is cell specific decay rate, YNO 

is nitrate yield coefficient, q is phycocyanin content in cells, k 

is phycocyanin production constant and kd is phycocyanin 

consumption constant. um is maximum specific growth rate, I 

is light intensity, ks is light saturation term and ki is light 

inhibition term. km is maximum phycocyanin accumulation 

constant, ksp is light saturation term for phycocyanin 

synthesis and kip is light inhibition term for phycocyanin 

synthesis.  

Furthermore, due to the presence of light attention, local light 

intensity in the photobioreactor (PBR) is not uniform. To 

account for the severe light attenuation observed in pervious 

experiments, the modified Lambert-Beer’s law in Eq. (26) is 

adopted to estimate local light intensity which is attenuated 

by bubble scattering and cell absorption. 

         zLKxzKxIzI
aa

  expexp
0

  (27) 

where I0 is incident light intensity, τ is cell absorption 

coefficient, Ka is bubble reflection coefficient, z is the 

distance from light source, and L is the width of the PBR. 

In our recent work (del Rio-Chanona et al. 2015), an average 

growth rate for u0 and k was calculated. For computational 

tractability, in this work we calculate the average light 

intensity (Iav) received by cells by integrating Eq. (27) local 

light intensities over the volume of the reactor, which is then 

used to substitute local light intensities (I(z)) presented in Eq. 

(25) and Eq. (16).  

Moreover, given the fact that nitrate inflow rate (FN) is a 

control in this study, while the model was originally design to 

simulate a batch process, a new term, FN ∙ Nin is added on the 

right-hand-side of Eq. (22) so that the model can be used to 

simulate the fixed-volume fed-batch process. The influent 

nitrate concentration (Nin) is assumed to be 500 mM and the 

fed-batch is designed to be a 16-day process. 

2.2 Process description 

To maximize the production of C-phycocyanin a 16-day fed-

batch process was selected as the production mode for 

operation, and dynamic equations were modified accordingly. 

This would allow to treat the nitrate inlet flow and the light 

intensity as control variables, and hence we can formulate an 

optimal control problem. To maintain this scenario as close to 

reality as possible, controls where only allowed to vary once 

per day during a 16 day computational experiment. 

3. PARAMETER ESTIMATION AND CONFIDENCE 

ELLIPSOIDS 
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3.1 Parameter estimation 

In this section we outline the procedure followed to estimate 

the parameters in (31) for the model in equations (21)-(26). 
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To estimate the parameters in (31), the following nonlinear 

least-squares optimization problem is formulated. 
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The output variables once the ODE system is solved are 

labelled y, while the experimental data is labelled ŷ , plb and 

pub are the upper and lower bounds of parameters, and Λ is 

the inverse of the covariance matrix.  

Given that the parameter estimation problem is nonconvex, 

and to avoid shallow local minima, a multi-start framework 

was implemented. One hundred initial starting points were 

generated by a Sobol sequence and the estimated parameters 

that produced the lowest objective function was chosen. 

3.2 Confidence Ellipsoids 

Joint confidence regions were determined by considering all 

simultaneous linear combinations of the parameters, 

computed by: 

    2
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where p
*
 is the optimal parameter solution determined by 

(23), and the right-hand side is the standard value for the Chi-

square test given the number of parameters and a 95% level 

of confidence. 

4. OPTIMIZATION OF PROCESS PRODUCTION 

An optimal control problem was formulated to optimize the 

production of C-phycocyanin in a fed-batch operation mode. 

To maximize the process production two control variables 

where used, light intensity and nitrogen inflow rate. The 

resulting dynamic optimization problem is the following: 
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The solution of (41) would result in the optimal control 

sequences for Fin(t) and L(t). 

Problem (41) is discretized through orthogonal collocation 

over finite elements, where the collocation points are placed 

according to a fifth order Radau quadrature. This yields the 

resulting nonlinear programming (NLP) problem: 
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where q is C-phycocyanin production, NE is the number of 

finite elements, and we take x to represent the states in the 

differential equation model. 

5. WORST-CASE SCENARIO OPTIMIZATION  

5.1 Bilevel programming approach 

A general approach to determine worst-case scenarios in 

complex optimization problems is to sample different 

scenarios and then either derive statistical moments on the 

solution, or use the worst scenario sampled to determine the 

possible worst-case scenario. In this work, we present a 

strategy that avoids statistical inference or scenario sampling. 

The bilevel max-min approach enables us to formulate a 

problem that would yield the worst-case scenario of the 

dynamic optimization in the system. In this case, given that 

we have no strict bound or inequality constraints that our 

system is likely to violate, the worst-case is the scenario with 

the lowest product production even when the system is 

optimized. For this, we maximize the production of C-

phycocyanin by using light and nitrate inlet as control 

parameters. Furthermore, we assume the system will select 

the worst possible set of parameters that are within the 95% 

confidence intervals computed by (33). This bilevel 

optimization problem is the following: 
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Problem (51) can be reformulated by embedding the 

necessary and sufficient conditions for optimality of the inner 

minimization problem into the outer optimization problem. 

This formulation of a bilevel problem is referred as 

mathematical programs with complementarity constraints 

(MPCC). MPCC have a less complicated structure than the 

original Bilevel problems, particularly, the feasible sets are 

always closed (Allende & Still 2013). This reformulation 

yields the following single-level problem: 
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where µ is the Lagrange multiplier for the constraint on the 

parameters feasible region, delimited by the confidence 

ellipsoid and G and F are 
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When embedding the lower bilevel problem into the upper 

problem by the conditions of optimality it is advisable to use 

the Fritz-John (FJ) necessary conditions (Allende & Still 

2013). However, given that we do not have equality 

constraints for the lower problem, the Karush-Kuhn-Tucker 

(KKT) and the FJ necessary conditions are the same. 

Furthermore, we consider the smoothing approach (Allende 

& Still 2013) where we replace the complementary equation: 

  0
*
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where ε > 0 is a small perturbation parameter. 

Notice that for us to obtain expression (54) we would have to 

integrate (23) which itself is a function of the integral of (26). 

This becomes problematic, and hence we replace (54) with 
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Given our orthogonal collocation formulation, (57) is 

implemented in NLP form as: 
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where in (59) q represents our state of total phycocyanin 

production and x correspond to all states involved in (23). 

Finally, let us note that (23) is only twice differentiable for 

parameters ksp, kip, Ka, τ, and KNp, hence they are the only 

parameters considered as optimization variables. 

6. IMPLEMENTATION 

Optimization problems in this work were implemented in a 

Python programming environment, using Pyomo as an 

interface for the optimization solver IPOPT (Wächter & 

Biegler 2006). The value of ε vas set to be 10
-6

. Furthermore, 

solving (52) directly was found difficult due to inadequate 

starting points for the optimization problem. Therefore (41) 

was first solved to obtain preliminary initialization points, 

later, to ameliorate convergence issues with the numerical 

solution of (52) expressions 

      0
***
 pGpFpL

ppp
   (61) 

   
*

pG      (62) 

which contain bilinear and trilinear terms substituted by their 

linearized form (Adjiman et al. 1998). Subsequently, 

linearized expressions of (61) were introduced one-at-a-time 

for each parameter in question to update the initial guesses 

for the optimizer. Finally, (61) and (62) where re-introduced 

in the overall problem, and an optimal solution to (52) was 

attained. In addition to this approach, linearizing the bilinear 

terms in (61) and (62) by a mixed-integer approach was also 
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implemented, however the problem was found more difficult 

to converge than with the convex relaxation approach. 

7. RESULTS AND DISSCUSSION 

7.1 Best-case and worst-case scenarios 

To obtain an optimistic scenario of the process optimization, 

(41) is solved, however, parameters in (31) were also 

assigned as optimization variables, hence helping the 

maximization of the bioproduct. 

 

Fig. 1. Optimal nitrate inlet input for the optimistic and 

pessimistic scenarios. Solid line: optimistic scenario control. 

Dotted line pessimistic scenario control. 

 

Fig. 2. Optimal light input for the optimistic and pessimistic 

scenarios. Solid line: optimistic scenario control. Dotted line 

pessimistic scenario control. 

 

Fig. 3. Optimal production for the optimistic and pessimistic 

scenarios. Solid line: optimistic production. Dotted line 

pessimistic scenario production. 

 

Fig. 4. Biomass dynamic behaviour for the optimistic and 

pessimistic scenarios. Solid line: optimistic scenario control. 

Dotted line pessimistic scenario control. 

7.2 Discussion 

The parameter values for both scenarios are listed in Table 1. 

Parameter Pessimistic scenario Optimistic scenario 

ksp 37.328 11.323 

kip 197.78 800.0 

Ka 3.799 0.0 

τ 73.381 48.382 

KNP 18.372 16.892 

From Fig. 3 and Fig. 4, it can be seen that there is a 

significant change in the potential production on the process, 

which is summarized in Table 2. This highlights the fact that 

an incorrect estimation of the best and worst production 

yields can significantly endanger the safety and economics of 

the process. 

 Biomass 

conc. 

C-phycocyanin 

production 

Optimistic scenario 4.8 773.2 

Pessimistic scenario 7.5 533.9 

Furthermore, it is also worth noticing that there is a 

significant difference between the optimal control inputs for 

light and nutrient supply, depending on the dynamic model 

parameters chosen. This means, that as expected, different 

parameter sets will result in different optimal control inputs 

to maximize the bioproduct. Furthermore, given the wide 

confidence intervals, more experimental measurements are 

needed to narrow the varying range of the controls. This 

highlights the need for an online identification and 

optimization strategy to be put in place (e.g. MPC, EMPC) so 

that process optimization can be performed effectively. 
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In Table 1 we can see that ksp, which is the light saturation 

term, is higher in the pessimistic scenario than in the 

optimistic scenario. A system with a higher light saturation 

term is not able to use light to produce phycocyanin as 

efficiently as one that has a lower light saturation term. 

Moreover, the light inhibition term (kip) is higher in the 

optimistic scenario, which means that when there is a high 

light intensity, it will not inhibit the production of 

phycocyanin as much as that in a system with a lower value 

of kip, such as the pessimistic scenario. 

Ka and τ regulate how much the culture scatters and absorbs 

light, respectively. In both cases the pessimistic scenario has 

a higher value, which diminishes the amount of light that can 

be utilized for phycocyanin production. Furthermore, KNp can 

be seen to have practically the same value in both cases, 

which reflects the low sensitivity of KNp to phycocyanin 

production, and that other parameters can inhibit the systems 

performance more severely. Thus, it is important to identify 

the correct value of other parameters through model-based 

experimental design method in future study.  

There are still shortcomings of the present methodology that 

will be addressed in future work. In first instance, the 

computational tractability of the current problem should be 

improved. In addition to this, there is no guarantee that the 

follower optimization problem converges to a global 

minimum, which may lead to an overestimation of the worst-

case scenario.  
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