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Abstract: Online learning based Least Squares Support Vector Machine (LSSVM) can address the 

modeling problems of a time-varying process, which has a few advantages such as low training time and 

good general. Nevertheless, many of online learning algorithms cannot adapt the kernel parameters for 

the time-varying characteristic, so the inferred LSSVM models are low-accuracy. An online learning 

algorithm with time-varying kernels is proposed to improve online training accuracy of LSSVM model. 

The kernel parameters are optimized along with time-varying process using updating samples data. To 

achieve reliable performance during online optimization, we propose a controllable metaheuristic 

algorithm that adopts a contracted particle swarm optimization with an elaborate chaotic operator. The 

proposed modeling approach is utilized in the energy efficiency prediction of the electrical smelting 

process, and the experimental results show that the proposed online learning algorithm can both improve 

the accuracy of LSSVM model and ensure low online training time.  

Keywords: Time-varying process, online learning, LSSVM, online optimization, controllable 

metaheuristic algorithm 

 

1. INTRODUCTION 

The modeling of a time-varying process requires training 

model with sample data on line and in real time. As the 

standard Support Vector Machine (SVM) needs to solve a 

convex quadratic programming problem in training a model, 

it will take longer and longer time with the increase of 

samples. Furthermore, it has to retrain model once the 

samples change. To achieve training model on line and in 

real time, some online learning algorithms are suggested by 

means of reducing samples for training model (Alamdar, F. et 

al.,2016, Song, X. et al., 2017). He, Q. et al. (2011) 

developed an incremental learning algorithm for SVM, which 

can train some new coming data on line to update the existing 

model. Wang, H. et al. (2007) proposed a kernel cache-based 

method to accelerate the standard algorithm and obtained a 

new fast online SVR algorithm. Guo, L. et al. (2014) 

proposed an incremental extreme learning machine for online 

sequential learning problems. Maali, Y. and Jumaily, A. A. 

(2013) proposed a new approach to improve SVM 

performance in general, of which the idea is to transfer more 

information from the training phase to the testing phase. 

Agarwal, S. et al. (2008) applied kernel-based machine 

learning methods to online learning situations. A concept of 

span of support vectors was introduced into online SVMs that 

performs reasonably well in time-consuming. Wang, W. et al. 

(2008) adopted an online SVM model to the problem of air 

pollutant levels prediction. Manoel, C. N. et al. (2009) 

introduced an Online Support Vector machine for the 

prediction of short-term freeway traffic flow under both 

typical and atypical conditions. 

LSSVM transforms the learning problem of SVM into 

solving the problem of linear equations, which reduces the 

computational complexity of the model training and therefore 

gains a faster computation speed (Langone, R. et al., 2014). 

Thus, LSSVM has an advantage of online modeling for a 

time-varying process. Zhang, W. et al. (2013) developed a 

heat rate forecasting method based on online LS-SVM that 

had possessed dynamic prediction functions.The current 

proposed online learnings cannot adapt the kernel parameters 

for the time-varying characteristic, so the inferred LSSVM 

models are with lower accuracy. Aiming at this problem, we 

will propose an online learning algorithm with time-varying 

kernels to improve the online training accuracy of LSSVM 

model. Once sample data updates, the associated kernel will 

be regulated optimally. Optimization algorithms include grid 

search, genetic algorithm, particle swarm optimization 

algorithm (PSO) (Long, B. et al., 2014, Guo, X. et al., 2008) 

for regulating the kernel parameter. Grid search is an 

exhaustive method, although the optimization accuracy is 

high but time-consuming. Genetic algorithm, PSO, and other 

metaheuristic algorithms have global search ability, so it is 

suitable for solving non-convex parameter optimization 

problem. However, these algorithms are random, and their 

performances lack reliability during online training of model. 

To achieve reliable optimization performance on line, we 
propose a controllable metaheuristic algorithm that adopts 

a contracted PSO with an ingeniously devised chaotic 
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operator. To verify the proposed algorithm, we apply it in 

the energy efficiency prediction of electrical smelting 

process, and the experimental results show that the 

proposed online learning algorithm can both improve the 

accuracy of LSSVM model and ensure low online training 

time under the dynamic change of working condition. 

2. ONLINE LEARNING ALGORITHM FOR LSSVM 

BASED MODELING 

2.1  LSSVM based modeling 

The training of the LSSVM model by the data set can be 

regarded as an optimization problem defined as follows: 
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where   and 
i

 represent the relative weight and regression 

error, respectively, and
i

x  represents input vector, and
i

y  

represents output variable, and l is the number of samples. 

The function ( , )J    represents the structural risk consisting 

of empirical risk and confidence range. 

To solve this optimization problem, Lagrange function is 

constructed as follows: 
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where 
i

  is Lagrange multipliers. The solution of (1) can be 

obtained by Karush-Kuhn-Tucker (KKT) with respect to w, b, 

i
 and

i
 . Eliminate ω and

i
 , and then get linear equality: 
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Apply Mercer’s condition, we can get   
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T
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In this paper, RBF kernel is adopted, which expresses: 
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Then it leads to the following LSSVM regression model: 
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Therefore, the LSSVM based modeling need to determine the 

kernel parameter and relative weight  by training samples 

set off line, and then calculate Lagrange multipliers α  and b 

by solving equation (4). 

2.2  Online learning algorithm for LSSVM with time-varying 

kernels 

LSSVM based online modeling is to retrain the LSSVM 

regression function once samples update, and thus it requires 

faster training on line. 

Supposed new measured data is ( , )
k k

x y in the kth sampling 

point, and the online LSSVM model should be adjusted as: 
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where the parameters of  ( , ) 1, 2, , 1
i i

x x i k   will inherit 

history value, respectively, and the parameter
k

  of ( , )
k k

x x  

associated with new support vector should be optimized by 

training updated samples. 

To differentiate these kernels, define 
,i j

 is the parameter of 
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Owing to the Symmetry of kernel functions, it can be got as: 
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Change ( )H k  into block matrix： 
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According to the matrix formula, the following equation will 

be established when both 1
( )H k

 and 1
( 1)H k


 are available: 
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According to equation (13), both 
1

( 1)H k


 and 

( 1)U k  can inherit the history results got in the (k-1)th 

sampling period. As long as the parameters 
k

  and 
k

  are 

determined, both ( )V k  and ( )v k  can be figured out. Thus, 

both Lagrange multipliers vector α  and b can be figured out 

easily by means of equation (4). 

2.3  Online Controllable Optimization of Kernel parameters 

The metaheuristic algorithms have global search ability, and 

are suitable for solving non-convex parameter optimization 

problem. However, these algorithms lack reliability due to 

stochastic behavior. To achieve reliable optimization 

performance on line, we propose a contracted PSO tuned by 

an elaborate chaotic operator (gPSO for short).  

We devise two types of chaotic map to initialize population 

and replace the random numbers of PSO, respectively. The 

first one is a two-dimensional cat map that is area-preserving 

map and suitable for initializing population for PSO in two-

dimensional decision area. The cat map is formulated as 
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The other one is designed by utilizing tent map perturbed by 

a Logistic map that is utilized to replace the random numbers 

of PSO. The slight disturbance of Logistic map can eliminate 

the fixed points of tent map and almost do not change the 

amplitude of tent map. The new chaotic map model is 

formulated as 
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The detailed explanation for each step of gPSO is presented 

as follows. 

Step1. Adjust the initial value of two chaotic maps.  

If the relative error of the previous training results is 

inacceptable, then adjust the initial value of chaotic maps to 

change the search trajectory of PSO until training error is 

acceptable, and then preserve the tuned initial value. 

Step2. Initialize population by the iteration of two-

dimensional cat map. 

Since the iterative value is between 0 and 1, they need to be 

scaled up according to the ranges of  and  , respectively, 

for example, 1000 and 100. Supposed the initialized 

population is  1, ,
i

i Poppx , and 
0, 0 ,i i i

    px represents 

the ith particle. 

Step3. Modify the guides. 

Evaluate each individual of the population by calculating the 

root mean square error (RMSE) of entire testing set between 

trained model and real testing data, which is fitness value of 

optimization process, expressed as: 
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where yij is the jth actual output of Si,  f (xij) is the jth 

predicting output of Si. 

To assess the performance of the optimization process 

comprehensively, we introduce the cross validation (CV) to 

calculate model error. The train set is split into lfold subsets 

equally. 

The personal guide and global guide are modified by 
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Step4. Compute the new positions of individuals. An 

individual’s position is updated as follows: 
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Where, c1 and c2 are accelerating factors, and 

1 2
4c c  , 2

1 2 1 2 1 2
2 / 2 ( ) ( ) 4( )c c c c c c        .  c3 and 

c4 generate by the tent map, and
3 j

c  ,
4 1j

c 


 . 

Step5. Check for termination criteria. While running 
generations equal to the maximum generation, stop and 
output the found  and  . Otherwise, go to Step3 and 

perform the next generation search. 

3. EXPERIMENTAL RESULTS 

Firstly, the reliability of proposed gPSO is verified by 

optimizing an easy benchmark problem Rosenbrock function 

with gPSO, Clerc’s Constriction PSO (cPSO), which has a 

known minimum 0. The population of both two algorithms is 

30, and generations are 100. Figure 1 shows the results 

obtained by cPSO for 1000 runnings. The Y-axis is the target 

value obtained for each running. The smaller the value is, the 
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better the algorithm is. Figure 2 shows the adjustment curve 

of the chaotic initial value for 50 runnings. Figure 3 shows 

the results obtained by cPSO for 50 runnings. 
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Fig. 3. Results found by gPSO in 1000 runnings 

In Fig. 1, it shows the performance of cPSO is fluctuating in 

different runnings due to its stochastic behavior.  

In Fig.2, the initial value of the two-dimensional Cat map 

0 ,0
0.95  ,

0,0
0.02  ,and the initial value of the Tent map 

0
0.1  ,

0
0.1   in the first running of gPSO. At this time, 

the optimization result is 1.801, which cannot satisfy the 

requirement. Hence, the initial value of the chaotic map is 

tuned into 
0 ,0

0.9  , 2

0,0
0.7   in the second running. Then, 

the optimization result is improved to 0.068. The initial 

values of the cat map are kept, and the initial values of the 

tent map are tuned into 
0

0.42  ,
0

0.74   in the third 

running. The optimization result equal to 0.000049 and its 

accuracy is satisfactory. In the subsequent running of gPSO, 

it will not change the initial values until its performance 

deteriorates.   

The simulation results, in Fig. 3, show that gPSO can change 

the search trajectory by adaptively adjusting the chaotic 

initial value. Therefore, once the appropriate initial value can 

be determined, the optimization performance of the algorithm 

can be ensured without fluctuation. 

In view of the dynamic uncertainty existing in the electric 

smelting process, the proposed online LSSVM modeling with 

controllable optimization of kernels (gLSSVM for short) is 

applied to predict its energy efficiency to optimize its power 

supply. It verifies its effectiveness by the comparison among 

the standard LSSVM and the traditional online LSSVM and 

gLSSVM without chaotic operator and gLSSVM. The 

comparison results are shown in Table 1. 

Table 1.  Comparison results 

 Training 

time (s) 

Prediction 

deviation 

standard LSSVM 85 3.3% 

traditional online LSSVM 19 5.6% 

gLSSVM without chaotic operator 32 3.4% 

gLSSVM 31 3.1% 

 

According to the experimental results, it can be found that 

both online LSSVM and two types of gLSSVM are shorter 

than standard LSSVM in training model, which thanks to the 

online learning algorithm to save matrix inversion calculation. 

The traditional online LSSVM uses a fixed kernel function so 

that its modeling is lower in accuracy than the two types of 

gLSSVM.  The gLSSVM with chaotic operator perform 

reliably for online modeling than one without chaotic 

operator, so the former obtains a better prediction accuracy 

than the latter. 

4.  CONCLUSION 

This paper proposes an online learning algorithm for LSSVM 

based modeling with controllable optimization of kernels to 

address the modeling problems of a time-varying process. 

Although the current online learnings for LSSVM can low 
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training time, it cannot adapt the kernel parameters for the 

time-varying characteristic, so the accuracy of the LSSVM 

models are low. Aiming at this problem, we propose an 

online learning algorithm with time-varying kernels to 

improve the online training accuracy of LSSVM model. Once 

sample data updates, the associated kernel will be regulated 

optimally. Considering that genetic algorithm and PSO and 

other metaheuristic algorithms have global search ability, 

they are suitable for solving non-convex kernel-parameter 

optimization problem. However, these algorithms are random, 

and their performances lack reliability during online training. 

To achieve reliable optimization performance on line, we 

propose a controllable metaheuristic algorithm that adopts a 

contracted PSO with an ingeniously devised chaotic operator. 

To verify the proposed algorithm, we apply it in the energy 

efficiency prediction of an electrical smelting process, and 

the experimental results show that the proposed online 

learning algorithm can both improve the accuracy of LSSVM 

model and ensure low online training time under the dynamic 

change of working condition. 
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