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Abstract: Tracking control based on target signal for a class of uncertain neutral systems is investigated 

in this paper. An augmented error system is constructed by combining the control system with the target 

signal. Through a Lyapunov-Krasovskii function and some inequalities, a stability criterion in terms of 

LMIs is proposed for the auto-controlled system. Then a state feed-back control is designed for the 

augmented error system. And tracking control, where the target signal and error signal are utilized to help 

deduce the static error, is obtained for the original uncertain neutral system. A numerical example is 

given to illustrate the validity of our proposed method.  
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

1. INTRODUCTION 

Time-delay is often encountered in various systems, such as 

chemical engineering systems, inferred grinding model, and 

manual control, neural network (see Kwon et al. (2016), 

Ramakrishnan et al. (2011)). It has been shown that time-

delay can cause instability and poor performance of a control 

system. Therefore, systems with time-delay have attracted a 

great deal of attention over the past decades (see Fridman et 

al. (2016), and Wu et al. (2004)). 

Neutral system is a special class of time-delay system, where 

delays exist not only in the state but also in the state 

derivative. A number of practical systems can be modeled by 

neutral systems, including partial element equivalent circuit 

(PEEC), population ecology, heat exchangers (see Ghadiri et 

al. (2014)). Besides, through model transformation, many 

time-delay systems, such as lossless transmission model and 

standard delay systems can be investigated as neutral 

systems. There has been increasing interest in analysis and 

synthesis of neutral systems because of their significance 

both in theory and application. Many studies for neutral 

systems have also been done; primarily on stability analysis 

and synthesis (see Pepe. (2016)).  

In some cases, target signal is known. To help the output 

track the target signal better, it is necessary to make use of 

the target signal’s information. However, target signal is less 

focused on in studies of neutral systems. Only few of these 

are aimed at H


 output tracking control, where a reference 

model is needed (see Liu et al. (2013), Zhang et al. (2010), 

and Xia et al. (2014)). Refs. Liu et al. (2013) and Xia et al. 

(2014) derived H1 tracking control respectively for switched 

neutral systems and uncertain delay system. 

Tracking control for a class of uncertain neutral systems is 

proposed in this paper. Different from H


control, any 

reference model is not used in this paper. An augmented error 

system is firstly constructed on basis of the properties of the 

system. By using a Lyapunov function and applying Jensen’s 

inequality, we derive a criterion in terms of LMIs for the 

auto-controlled system. Then tracking control, which 

contains both the error signal and the target signal, is deduced. 

Similar to preview control (see Katayama et al. (1987)), 

where the target signal is always utilized in control design, 

tracking control in this paper can also help to reduce the 

static error. A numerical example is given to show the 

effectiveness of the proposed method. 

Throughout this paper, n
R  is the n-dimensional Euclidean 

space. m n
R  denotes the set of m n  real matrix.   

represents the elements below the main diagonal of a 

symmetric matrix. T
A means the transpose of A . 0P  

represents that P is positive definite. I and O respectively 

denote identity matrix and zero matrix with appropriate 

dimensions. 

2. PROBLEM DESCRIPTION AND PRELIMINARIES 

We consider a class of uncertain neutral systems in this paper 

described by the following equations. 

1 1

( ) ( ) ( Δ ) ( )

( Δ ) ( ) ( ),

( ) ( ),

( ) ( ), ( ) ([ , 0], ),
n

x t Gx t h A A x t

A A x t h Bu t

y t Cx t

x h    

   


   






    C R

   (1) 

where ( )
n

x t  R is the state vector, ( )
m

u t  R is the input 

vector, ( )
p

y t  R is the output vector, n n
A


 R 、 1

n n
A


 R , 

p n
C


 R , n m

B


 R , and n n
G


 R are known real parameter 

matrices, and 0h > is the time-delay constant. The initial 

condition function ( ) ([ , 0], )
n

h   C R is a given 
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continuous vector valued function. The parameter 

uncertainties n n
A


  R  and 

1

n n
A


  R  are assumed to be 

in the form of    1 0 1
( )A A DF t E E   , in which the 

matrices D , 0
E , and 1

E are known real constant matrices 

with appropriate dimensions, and ( )F t  is a real unknown 

matrix and satisfies
T

( ) ( )F t F t I .  

The paper is intended to obtain tracking control for uncertain 

neutral system (1). The target signal of system (1) is assumed 

to be that ( )
p

r t  R , and it is a known function. The 

tracking error of system (1) is defined as 

( ) ( ) ( )e t y t r t  .                                  (2) 

To proceed further, some related assumptions are made as 

follows. 

Assumption 1 The matrix G  satisfies 0G  and 1G  . 

Assumption 2 The target signal ( )r t  is a piecewise 

continuously differentiable function. For its continuous 

points, we assumed that ( )r t ， ( )r t ， ， ( 1)
( )r t

s
are 

all continuous, and
( )

( ) 0
s

r t  . 

Remark 1 The stability of ( ) ( )x t Gx t h  is guaranteed by 

Assumption 1 (see Duda. (2016)). 

Remark 2 Assumption 2 makes that more types of signal can 

be contained, such as step signal. If ( )r t  is differentiable 

with infinite order, it can be expanded into Taylor series with 

finite terms to satisfy Assumption 2 within allowable error 

ranges.   

The following lemmas are needed to obtain the main results. 

Lemma 1(Jensen's inequality, Wang. et al. (2016)) For any 

constant matrix R
n n

P


 , 0P  and differentiable vector 

function ( )x t , with appropriate dimensions, the inequality 

holds as follows 

T

T
( )d ( )d ( ) ( )d

t t t

t h t h t h
x s s P x s s h x s Px s s

  

    
          

Lemma 2(Schur Complementary, Liu. (2016)) Given constant 

symmetric matrices 1 2 3
, ,S S S  where 

T

1 1
S S  and 

T

2 2
0S S  , then 

T 1

1 3 2 3
0S S S S


  if and only if  

T

1 3

3 2

0
S S

S S

 
 

 

  or  

T

2 3

3 1

0
 

 
 

S S

S S
. 

Lemma 3 3(Li. (2015)) For any matrices
T

Q Q , H , E  

with appropriate dimensions, the inequality  

T T T
( ) ( ) 0Q HF t E E F t H  

 

holds for all ( )F t  satisfying T
( ) ( )F t F t I , if and only if 

there exists a scalar 0  , such that the following inequality 

holds. 

1 T T
0Q HH E E 


   . 

3. CONSTRUCTION OF AUGMENTED ERROR SYSTEM 

Based on (1) and (2), the neutral dynamic equation of ( )e t is 

deduced as 

         
( ) ( ) ( ) ( )

( ) ( ),

e t e t - h Cx t Cx t - h

r t r t - h

 



  

 
            (3) 

where 0 1  . In order to combine ( )e t with ( )x t , the 

state equation of system (1) is rewritten as 

1 1

( ) ( ) ( Δ ) ( )

( Δ ) ( ) ( ).

x t Gx t h A A x t

A A x t h Bu t

   

   
      (4) 

Let 
T

T T
( ) ( ) ( )z t x t e t 

 
. From (3) and (4), a new 

neutral system with uncertainties is constructed as 

1 1

( ) ( ) ( Δ ) ( )

( Δ ) ( ) ( )

( ) ( ),

z t Gz t h A A z t

A A z t h Bu t

Nr t Nr t - h

   

   

 

      (5) 

where 
 

1

1

0 Δ 0 0
, Δ ,

0 0 0 0

A A A
A A A

C C

     
       

     
 

1

1

Δ 0 0 0
Δ , , , .

0 0 0 0

A G B
A G B N

I I

       
          

       

Remark 3 System (5) is called the augmented error system of 

(1). Compared with ordinary systems, the error signal is 

taken as a component of the state vector ( )z t , and the target 

signal is contained in the new system. 

In order to transfer system (5) into an ordinary neutral system 

in form, the target signal and its derivatives are composed as 

follows. 

Let 

( 1)

( )

( )
( )

( )
s

r t

r t
R t

r t


 

 

 
 

 
 

. Based on Assumption 2, the dynamical 

equation of ( )R t  is obtained as follows. 

( ) ( ) ( ) ( )R t R t h ER t ER t h            (6)  

where 
.

p

p

p

O I O O

O O I O

E

O O O I

O O O O

 

 

 

 
 

 

 
 

 Then the following 
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equation is established. 

1 1

( ) ( ) ( Δ ) ( )

( Δ ) ( ) ( ),

X t GX t h A A X t

A A X t h Bu t

   

   

     (7) 

where 

( ) 0
( ) , , , ,

( ) 00 0

z t BG A N
X t G A B

R t I E

      
         
      

1 1

1 1

Δ 0 Δ 0
,Δ ,Δ

0 0 0 0 0

A N A A
A A A

E





     
       

     

[0 0 0].N N

 

We obtain the parameter uncertainties ΔA and 
1

ΔA satisfy  

1 0 1
Δ Δ ( )A A DF t E E   

  
 

where 

( , , ),
p p sp sp

D diag D O O
 



0 ( 1)

0

( 1) ( 1) ( 1)

,
n s p

s p n s p s p

E O
E

O O

 

    

 
  
 

1 ( 1)

1

( 1) ( 1) ( 1)

n s p

s p n s p s p

E O
E

O O

 

    

 
  
 

. 

The transformation from system (1) into (7) makes the main 

intend of this paper is to deduce ( )u t  of system (7). Then the 

input ( )u t  of system (1) can be proposed. Thus the 

controller of system (1) contains integrators or integrations 

which may help the system to eliminate static error (see 

Katayama et al. (1987)). 

4. MAIN RESULTS 

4.1  The Asymptotic Stability of System (7) 

In this section, we wish to design a state feedback control 

such that the closed-loop system of (7) is asymptotically 

stable. So the asymptotic stability of its following auto 

controlled system is needed to study.  

       
1

ˆ ˆ( ) ( ) ( ) ( )X t GX t h AX t A X t h               (8) 

where ˆ ΔA A A   ,
1 1 1

ˆ ΔA A A  , A  and 
1

A  satisfy 

T

1 0 1
Δ Δ ( ) , ( ) ( ) .A A DF t E E F t F t I    

  
 

A delay-dependent criterion for stabilization of system (8) is 

firstly presented as the following theorem. 

Theorem 1 System (8) is asymptotically stable, if there 

exist 0 ( 1, 2, 3, 4)
i

Y i  , and a scalar 0  , such that the 

following LMI is feasible. 

                  
11 12 13

22 23

33

* 0,

* *

  

 



 

 


 

  

                 (9) 

where 

T T

1 1 1 1 1 1 0

T

11 2 13 2 1

3

T T

1 1

T T 3

12 2 1 2 1 22 4 42

T T

3 3

23 33 2

T

0

* 0 , 0 0 ,

* * 0 0 0

0

0 ( , , ),

0

0 0 0

0 0 ( , ,

0

AY Y A A Y G Y Y D Y E

Y Y E

Y

Y A Y A
Y

Y A Y A diag Y Y
h

Y G Y G

D diag Y I

D E

 

 

 



   
   

     
   

  

 

 
     

 
 

 

 
    
 

  

，

， ).I

 

 Proof  Based on 0 1  and Assumption 1, it is not hard 

to obtain that 1G  . Thus 1G . So ( ) ( )X t GX t h  is 

stable. For positive definite matrices 0 ( 1, 2, 3, 4)
i

P i   with 

appropriate dimensions, we define the Lyapunov-Krasovskii 

function as 

1 2 3 4
,   V V V V V
 

where 

T T

1 1 2 2
( ) ( ), ( ) ( )d ,

t

t h
V X t P X t V X P X  


  

T

3 3
( ) ( )d ,

t

t h
V X P X  


 

0
T

4 4
( ) ( )d d

 
  

t

h t
V h X s P X s s


 . 

It is apparently that 0V  . The time derivatives of 

( 1, 2, 3, 4)
i

V i  along the trajectories of (8) respectively 

satisfy  

T

1 1

T

1 1

T T T

1 1 1 1

T

1

2 ( ) ( )

ˆ ˆ2 ( ) ( ) ( ) ( )

ˆ ˆ ˆ( )( ) ( ) 2 ( ) ( )

2 ( ) ( ),

V X t P X t

X t P AX t A X t h G X t h

X t P A A P X t X t P A X t h

X t P G X t h



     
 

   

 

 

T T

2 2 2
( ) ( ) ( ) ( ), V X t P X t X t - h P X t - h

 
T T

3 3 3
( ) ( ) ( ) ( ), V X t P X t X t - h P X t - h

 

2 T T

4 4 4
( ) ( ) ( ) ( )d .


  

t

t h
V h X t P X t h X P X  

 

Here, by utilizing Lemma 1, we obtain  

T

T

4 4

1
( ) ( )d ( )d ( )d .

t t t

t h t h t h
X P X X P X

h
      

  

     
        

 

So 

T

2 T

4 4 4
( ) ( ) ( )d ( )d .

 

    
       

t t

t h t h
V h X t P X t X P X   

 

Then, the derivative of V is given by  
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1 2 3 4

T T T

1 1 2 1

T T

1 1 2

T T 2

3 3 4

T

4

ˆ ˆ( )( ) ( ) 2 ( ) ( )

ˆ2 ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )d ( )d
t t

t h t h

V V V V V

X t P A A P P X t X t P G X t h

X t P A X t h X t - h P X t - h

X t - h P X t - h X t P h P X t

X P X   
 

   

    

  

  

   
       

 

Substituting 
1

ˆ ˆ( ) ( ) ( ) ( )X t AX t A X t h GX t h      into 

V  obtains  

T
( )Ω ( ),V t t   

where 

T T T T T
( ) ( ) ( ) ( ) ( )d ,

t

t h
t X t X t h X t h X  



   
  

T

1 1 2 1 1 1 1

T2

3

4

2 T

3 1

ˆ ˆ ˆ 0

0 0
Ω ,

0

ˆ ˆ= 0 .

P A A P P P A P G

P

P

P

P h P A A G

 

 

  
 

   
   
 

     

  
 

,
 

If Ω<0,  we can obtain 0V  . Therefore, system (8) is 

asymptotically stable. 

Pre- and post-multiplying Ω<0 by 
1 1 1 1

1 2 3 4
( , , , )

   
diag P P P P  

. And let 
1


i i

X P ( 1, 2, 3, 4)i . We obtain the following 

result. 

1 2 1 3

T2

3

4

ˆ 0

0 0
0,

0

A X G X

X

X

X



 

 

 
    

   
 
     

 

where 
T

1 1 1 2 1
ˆ ˆ ,AX X A X P X     

T

1 1 2 3
ˆ ˆ 0 .AX A X GX  

   

Then, on basis of Lemma 2, we get 

T T

1 2 1 3 1 1 1

T T

2 2 1 2 1

T T

3 3 3

4

32

4

2

ˆ ˆ ˆ0

ˆ ˆ0 0 0

0 0

0 0 0 0.

1
0 0

0

A X G X X A X A X

X X A X A

X X G X G

X

X
h

X

X

 

 
  

 
  

 

     
 

     
 

 
     

 

        

   (10) 

where T

1 1
ˆ ˆAX X A   . 

Substitute ˆ ΔA A A  ，
1 1 1

ˆ ΔA A A    and 

 1 0 1
Δ Δ ( )A A DF t E E   

    

 into (11),  we get that             

T T

1 2 1 3 1 1 1

T T

2 2 1 2 1

T T

3 3 3

4

32

4

2

T T T

0

0 0 0

0 0

0 0 0

1
0 0

0

( ) ( ) 0,

A X G X X A X A X

X X A X A

X X G X G

X

X
h

X

X

F t F t



   

 

 
  

   
 
    

 

     

 

      
 
       

  

  (11) 

where
T T T T

0 0 0 0 ,D D D  
 

0 1 1 2 1
0 0 0 0 .E X E X E 

 
   

Let Q represents the left side of (11).Based on Lemma 3, (11) 

holds if and only if there exists a scalar 0  , such that the 

following inequality holds. 

1 T T
0.


  Q   

 

i.e.            T T
( )( ) 0.  Q     

Using Schur complmentary, we have 

T T

1 1 1 2 1 3 1

T

2 2 1

T

3 3

4

32

0

0 0

0

0

AX X A A X G X X A

X X A

X X G

X

X
h

    

 

 





 


 

   


   



     



     


    

     


    

      

T T

1 1 1 0

T T

2 1 2 1

T

3

T

4 0

2

0 0

0 0 0

0 0 0 0

0.0 0 0

0

0 0

0

X A X D X E

X A X E

X G

D

X D E

X

I

I

  

 



 















 


 


 



  


    

                 

Let ( 1, 2, 3, 4) 
i i

Y X i , inequality (9) is established. 

4.2  Controller Design 

In 4.1, the asymptotical stability condition for system (8) is 

obtained. Thus, the feedback controller of (7) can be derived. 
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As (7) is the augmented error system of (1), the control 

designed for (1) can also be obtained. 

Suppose ( ) ( )u t KX t  is the controller of system (7), where 

K is the feed-back matrix with appropriate dimensions. The 

closed-loop system of (7) is as follows. 

1 1
( ) ( ) ( Δ ) ( ) ( Δ ) ( )X t GX t h A BK A X t A A X t h       

Substitute A  of (9) with A BK , and let 1
W KY . The 

matrix block 11
  and 12

  of (9) change while others keep 

invariant. The feedback controller of augmented error system 

(7) is shown in the following theorem.  

Theorem 2 The closed-loop system of (7) is asymptotically 

stable by ( ) ( )u t KX t , if there exist a scalar 0  , some 

matrices 0( 1, 2, 3, 4) 
i

Y i , and a matrix W , such that the 

following LMI is feasible:  

                 

11 12 13

22 23

33

* 0,

* *

  

 



  

 


 

  

                         (12) 

where 
T T T T

1 1 1 1 1

11 2

3

T T T T T T

1 1

T T

12 2 1 2 1

T T

3 3

* 0 ,

* *

0

0

0

AY Y A BW W B Y A A Y G Y

Y

Y

Y A W B Y A W B

Y A Y A

Y G Y G





    
 

   

 
 

  
 

   

 
 

，

 
other matrix blocks 13 22 23 33

, , ,     are the same as that of 

(9). Moreover, the stabilizing feedback control gain is 

obtained by
-1

1
K WY . 

If there exists K to satisfy (12), we discompose K as  

 1 2 3
K k k k , 

where 
3 3,0 3,1 3, 1s

k k k k


   
. Then 

 
1

( )

1 2 3,

0

( ) ( ) ( ) ( ).

s

j

j

j

u t k x t k e t k r t





     

We get that                   

1 2

1

( 1)

3 ,0 3 ,

1

( ) ( ) ( )d ( )d

( )d ( ).

t t

h h

s
t

j

j
h

j

u t u h k x v v k e v v

k r v v k r t

 








   

 

 



 

Thus,  
0

1 1 2

1

( 1)

2 3 ,0 3 ,
0 0

1

( ) ( ) ( ) ( )d

( )d ( )d ( )

h

s
t t

j

j

j

u t k x t k h k C

k e k r k r t

   

   









   

  



 

 (13) 

From (13), we find that not only the state feedback, but also 

the integration of the desired output are contained in the 

control design for neutral system (1). Furthermore, the error 

integrator is also considered as we deduce the input of (1) 

from the augmented error system. Actually, the error 

integrator can help reduce the static error. 

5. ILLUSTRATIVE EXAMPLE 

Consider the following neutral-type system with parameter 

uncertainties given by 

     

0

1 1

( ) ( ) ( ( ) ) ( )

( ( ) ) ( ) ( ),

( ) ( ),

( ) ( ), ( ) ([ , 0], ),
n

x t Gx t h A DF t E x t

A DF t E x t h Bu t

y t Cx t

x h    

   


   






    C R

    (14) 

where 

0.05 0.03
,

0.2 0.1
G

  
  

 

0.2 0.3

0.1 0.2
A

 
  

 

,
0.03

0.04
B

 
  

 

,

1

0.02 0.05

0.01 0.3
A

  
  

  

,  0.11 0.1C   , 

0.02 0

0 0.04
D

 
  
 

, ( ) sinF t t , 
0

0.01 0

0 0.01
E

 
  
 

, 

1

0.01 0
,

0 0.02
E

 
  

 

0.1h  , 
2

sin
( )

1

 
 



 
  
 

. 

Our aim here is solving the gain matrix K  in Theorem 2 

such that the closed-loop system is asymptotically stable and 

the control law is obtained. 

The target signal is chosen as the following stair step signal: 

0, 10
( ) .

1, 10

t
r t

t


 



 

Based on Theorem 2 and through Matlab, the gain matrix K  

is obtained as follows 

 2.9325 2.2007 0.9733 0.4132 0.2931 0.2878 .K     

And the output response of system (13) is shown in Fig.1. 

When the compensation of the desired output is deleted from 

Theorem 2, the output response of system (13) is shown as 

Fig.2. 

 
Fig. 1. Response of (13) with the target compensation 
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Fig. 2. Response of (13) without the target compensation 

From the above two figures, we can find that the system 

output track the desired output better when there is target 

signal compensation. Under the usual control law without the 

target signal compensation, the time that system (13) 

becomes stable is longer. 

6. CONCLUSION 

In the paper, based on a class of uncertain neutral systems, 

we construct an augmented error system which is combined 

with the target signal and the error signal. By applying some 

inequalities and LMIs, the asymptotical stability of the auto-

controlled system is studied in term of a Lyapunov-

Krasovskii function. Then a feedback controller is given for 

the augmented error system. We analyse the construction of 

the control design for the uncertain neutral system. Not only 

the state feedback, but also the target signal is contained in 

the controller. Especially, the error integrator is also 

considered in the control design, which can help to reduce the 

static error and track the target signal better 
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