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Abstract: Biotechnological processes still represent a challenge for process optimization and
automation as the data landscape consists of unavailable, inaccurate, delayed or missing
measurement information. As a first step towards automation of biotechnological processes,
methods have to be refined for estimating the unknown states with an acceptable precision,
using a mathematical model of the system. Due to the technological advances, knowledge and
computational powers are constantly increasing so that models of a higher complexity and
predictive quality are now available. Hybrid cybernetic models offer a flexible, yet detailed
description of the biotechnological process under consideration. They connect the nonlinear
system dynamics to the metabolic information of the organism and allow to consider cell internal
regulations. In this work we explore if this class of models can be successfully applied for real-
time process monitoring. We do this by evaluating the performance of two commonly used state
estimators, an unscented Kalman filter and a moving horizon estimator, which both use a hybrid
cybernetic model to observe the non-linear process of poly-β-hydroxybutyrate production in the
organism Cupriavidus necator. To our knowledge this is the first time that this class of models
is used for model-based process observation.

Keywords: model-based, non-linear state estimation, process monitoring, hybrid cybernetic
modeling, industrial application, poly-β-hydroxybutyrate production, PHB

1. INTRODUCTION

Monitoring and control of biotechnological processes re-
quires the knowledge of the states of the system. In spite
of the recent progress in the development of technologies
for the non-invasive process analysis (Hinz (2006)), the
measurement information which can be obtained during
an industrial production process remains limited. If the
systems states cannot be measured directly, or if the mea-
surements contain uncertainties, they may be obtained
from measurement information via state observers. For
estimating these unknown states, the observer requires a
model of the process dynamics, inputs and measurements
of the system. In this work we consider a hybrid cyber-
netic model (HCM) to describe and observe the process
behaviour of the biological system. The HCM modelling
approach is of special interest, as it allows a detailed
description of the system, taking into account, the relevant
metabolic pathways of the organism in form of a reduced
set of elementary modes, the dynamics of the process in
form of ODEs, and information about cellular regulation,
through the introduction of cybernetic variables. In other
words, the dynamics of all external states of the system
with all the regulated reaction rates, are combined with a

linear algebraic equation system, which describes the sto-
ichiometry of the relevant metabolic pathways, and thus,
the intracellular fluxes of the system (Kim et al. (2008);
Song and Ramkrishna (2009)). The introduction of the
cybernetic variables allow the system to switch between
different growth scenarios. According to a work of Song
et al. (2009), HCMs yield the highest descriptive quality
when compared to other commonly used metabolic mod-
eling approaches, namely macroscopic bioreaction models
and dynamic flux balance analysis. It is the main contribu-
tion of this paper to investigate if the unscented Kalman
filter (UKF, Julier and Uhlmann (1997)) and the mov-
ing horizon estimator (MHE) (Rawlings (2013) and refer-
ences therein) can be applied successfully for monitoring
a nonlinear biotechnological process which is represented
by a HCM. The UKF belongs to a family of estimation
approaches derived from the well known Kalman filter
(Kalman (1960)). These are based on a probabilistic inter-
pretation of the estimation problem. The unknown states
are described through probability distributions. Starting
from a guessed initial distribution, Kalman filters operate
in a recursive way. The new estimate of the states is
determined by propagating the previous states through the
system and using the measurements at the current time
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step to update the probability distribution. Past measure-
ments are approximated and summarized in the covariance
matrix and in the estimated states of the previous time
step. Generally for nonlinear systems even if the initial
distribution is Gaussian, it does not remain Gaussian at
future times. Describing such distributions can be com-
putationally demanding, therefore several approximations
have been proposed. One way to approximate the distribu-
tion evolution is by using the UKF approach. This method
has been shown to describe accurately the future mean
and covariance up to the third order of a Taylor series
expansion (Julier (2002)). The MHE estimates the states
by minimizing the mismatch between the real measure-
ments and the model measurements along a shifting time
horizon. Within this horizon no information is lost since
no approximations are made. Due to computational time
limitations, the horizon has a finite length. The informa-
tion left behind the horizon is carried on by a so called
arrival cost which summarizes past information in one
single term. If the system is non linear this term only ap-
proximates the past information. Notice that despite this
approximation is similar to the approximation introduced
in the UKF, it is less critical since no loss of information
occurs within the time horizon. The MHE approach can
be seen from a purely deterministic prospective. In this
method no considerations of the probability distribution
of the system variables is necessary, although a connection
with the probabilistic prospective exists and it can be
easily shown in simple cases (Rawlings and Mayne (2009)).
Furthermore, in some cases probabilistic considerations
can be useful for weights selection. In this contribution the
performance of both observers is evaluated considering a
HCM which describes the poly-β-hydroxybutyrate (PHB)
production in the organism Cupriavidus necator (Franz
et al. (2011)).

2. MODEL

The HCM is based on a metabolic network for the pro-
duction of PHB in Cupriavidus necator alias Ralstonia eu-
tropha, which has 36 reactions (see Figure 1) and uses the
external metabolites fructose (carbon source) and ammo-
nium chloride (nitrogen source) to control PHB production
(Franz (2015); Franz et al. (2011)). In the given growth
scenario, PHB production is initiated if the carbon source
is supplied in excess, whilst the nitrogen source limits
the growth. To allow online estimation of the product,
a measurement equation reconstructing the intracellular
PHB content from the absorbance measurement of the
culture broth is implemented.

2.1 State Equations

If the stoichiometric coefficients of the metabolic network
are condensed in the stoichiometric matrices Ni, where
i ∈ {ex, in, µ} with the dimension ni × nr, and if the
reaction rates are condensed in vector r(t), the temporal
change of the concentration of the external metabolites cex
in [g/l] and internal metabolites cin in [g/g biomass], and
the change of the biomass concentration cbio in [g/l] can be
written in matrix notation (Heinrich and Schuster (2012);
Kim et al. (2008))
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Fig. 1. Used metabolic network for Ralstonia eutropha.

ċex(t) = Nexr(t)cbio, (1)

ċin(t) = Ninr(t)−Nµr(t)cin, (2)

ċbio(t) = Nµr(t)cbio. (3)

It is a general assumption of metabolic modeling ap-
proaches, that intracellular reaction rates are very fast,
compared to the extracellular reaction rates, and thus all
internal metabolites are in quasi-steady state (Stephanopou-
los et al. (1998)). However, as a storage compound with
slow dynamics the intracellular metabolite PHB has to be
excluded from this assumption. Therefore, the system of
differential equations is extended by

ċPHB(t) = NPHBr(t)−Nµr(t)cPHB. (4)

The derivates of the differential equation (2) describing
the remaining intracellular metabolites can be set to zero

ċin(t) = 0 = Ninr(t)−Nµr(t)cin. (5)

Further it is assumed, that the dilution of internal metabo-
lites cin caused by the growth of the biomass is much slower
than internal reaction rates, Nµr(t)cin = 0 follows. Now
the intracellular fluxes are represented by a homogenous
system of linear equations

Ninr(t) = 0, (6)

and Equation (2) is excluded from the set of ODEs.
The solutions of Equation (6) are the steady-state rate
distributions, referred to as flux modes in literature, and
span the flux space of the whole network.

2.2 HCM

Decomposition of the metabolic network A first step
of HCM is the decomposition of the metabolic network
into a set of active flux modes, referred to as relevant
elementary modes (EM), which are required for describing
the metabolic behavior under the given growth conditions
(Kim et al. (2008); Song and Ramkrishna (2009)). In case
of our model out of 122 EMs, 3 active EMs were selected
and shown to be in good agreement with experimental data
(Franz (2015)). The HCM approach further assumes that
every relevant EM is catalyzed by one key enzyme. Level
and activity of these enzymes are incorporated in the flux
vector rM, which represents the fluxes trough the EMs.
The vector of the reaction rates r(t) is then expressed by
the elementary mode decomposition Z (nr × nEM, where
nEM is the number of EMs) and the vector of reaction
rates (or fluxes) rM through the EMs

r(t) = ZrM(t). (7)

When this extension is included into the model, the
existing ODEs of the system can be rewritten to
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ċex(t) = NexZrM(t)cbio, (8)

ċPHB(t) = NPHBZrM(t)−NµZrM(t)cPHB, (9)

ċbio(t) = NµZrM(t)cbio, (10)

and an additional ODE describing the dynamics of the
enzyme levels of the key enzymes which catalyze the
relevant EMs

ċe,i(t) = δi + rEM,ib− εice,i − µce,i, (11)

have to be introduced. ce,i represent the nondimensional
enzyme levels of the key enzymes for the i-th EM, rEM,i the
synthesis rates of these key enzymes and b = 1−cPHB is the
catalytical active part of the biomass. The parameters δi
represent the constitutive enzyme synthesis rate constants
and εi the enzyme degredation constants.

Introducing the cybernetic control variables As the last
step of HCM derivation, the internal regulation of the
cell is considered by introducing the cybernetic control
variables u and v which control the synthesis and activity
of the relevant key enzymes. vi controls the reaction rates
through the EMs

rM,i = vice,i,relkr,i
∏

j∈L(i)

(
cs,j

Ki,j + cs,j

)
︸ ︷︷ ︸

ρi

, (12)

and, ui controls the enzyme synthesis rates

rEM,i = uike,iρi, (13)

where ce,i,rel are the relative enzyme levels, kr,iρi and ke,iρi
describe Monod type kinetics (Monod (1949)), and L(i) is
the set of metabolites associated to the i-th EM. According
to Franz et al. (2011) it is a robust assumption, that the
enzyme levels are quasi-stationary. Thus, Equation (11) is
excluded from the set of ODEs and the relative enzyme
levels can be approximated

ċe,i(t) = 0 → ce,i,rel ≈ uib. (14)

For detailed description of this approximation, see Franz
et al. (2011). It follows, that in the reduced version of the
HCM the enzyme synthesis rates rEM,i are neglected. The
cybernetic variables ui and vi are now both controlling the
fluxes through the EMs

rM,i = viuibkr,iρi. (15)

The control laws that define the cybernetic variable are
based on the assumption, that the cell is optimally regu-
lated and, thus, a certain objective is maximized

ui =
fiρi∑
fiρi

, (16)

vi =
fiρi

max fiρi
, (17)

where fiρi is the return of investment, which can be
calculated from the metabolic objective function. Here,
the objective function is to maximize the uptaken car-
bon. Hence, the vector of the weighting factor f contains
the normalized number of uptaken carbon units. Due to
the introduction of these cybernetic variables, the HCM
representation of the system allows the process to switch
between different growth phases, as ui and vi distribute
the substrate uptake flux among the three EMs of the
metabolic network in order to represent all the phases of
a process adequately (Song et al. (2009)). This is in im-
portant feature for the description of the PHB production

process, since, in dependence of the environmental and cell
internal conditions, the organism can switch between cell
growth, synthesis of PHB and metabolization of PHB.

2.3 Measurement Equation

In this work a measurement equation, which reconstructs
the PHB concentration (cmPHB=cPHBcbio in [g/l]) from the
absorbance measurement (A) of the culture broth at a
wavelength of λ = 600 nm is used

A(λ) = εPHB(λ)l︸ ︷︷ ︸
kPHB(λ)

cmPHB + εres(λ)l︸ ︷︷ ︸
kres(λ)

cres, (18)

cbio = cPHB + cres. (19)

Here, total biomass is viewed as a combination of two
compartments, namely the stored PHB and the residual
biomass (cres in [g/l]). This equation is based on the
assumption that A reflects changes in the distribution of
the cell size, and, that an increase of the cell size can
be attributed to high PHB content of the cell (Franz
(2015)). Using data of 4 batch cultivations Franz (2015)
determined the values of both constants kPHB and kres for
each experiment.

3. STATE ESTIMATION

The goal is using UKF and MHE observers for estimating
the states of the system, i.e. concentrations of PHB, the
total biomass, and the substrates fructose and ammonium
chloride using the absorbance measurement. They rely on
the system model and measurement model reported in
Section 2. These models can be described in a more general
form as follows

ẋ(t) = f(x(t)) + ζ, (20)

yk = h(xk, p) + ηk. (21)

Here, x ∈ Rnx denotes the state vector, y ∈ Rny denotes
the measurement vector and p ∈ Rnp the parameter
vector. The process noise ζ and the measurement noise
ηk are assumed to be zero mean normally distributed with
the covariance matrices Q and R, respectively. Note that
the measurement equation is in discrete time while the
dynamic equation is in continuous time. The symbol (̂·) is
used to indicate the estimated variables.

3.1 Unscented Kalman Filter

Here, the main idea of the UKF is shortly presented. For
more details the reader is referred to Wan and Van Der
Merwe (2000). The algorithm starts by choosing a number
of points, called sigma points, which represent the initial
probability distribution. Different sigma points selection
criteria have been proposed (Julier et al. (1995); Julier and
Uhlmann (1997); Julier et al. (2000)). In this paper they
are chosen such that they match the first two moments of
the prior distribution, namely mean and covariance

Xk−1 =
[
x̂k−1, x̂k−1 + γ

√
Pk−1, x̂k−1 − γ

√
Pk−1

]
. (22)

The parameters γ =
√
nx + λ and λ = α2(nx + κ) − nx

are scaling parameters where α ∈ (0, 1] determines the
spread of the sigma points and κ ≥ 0 is a secondary
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scaling parameter. These sigma points are then propagated
through the system dynamics Ẋ (t) = f(X ) with the initial
condition X (tk−1) = Xk−1. The resulting propagated
sigma points are indicated as X−k . The predicted states
and covariance matrix are computed as

x̂−k =

2nx∑
j=0

w
(m)
j X−j,k, (23)

P−k =

2nx∑
j=0

w
(c)
j (X−j,k − x̂

−
k )(X−j,k − x̂

−
k )T +Q, (24)

where w
(m)
j and w

(c)
j are given weights. The next step

is to calculate the solution of the measurement equation
for each sigma point Yk = h(X−k ) and to approximate
the predicted measurement, the corresponding covariance
matrix and the cross-covariance matrix

ŷk =

2nx∑
j=0

w
(m)
j Yj,k, (25)

Pyk,yk =

2nx∑
j=0

w
(c)
j (Yj,k − ŷk)(Yj,k − ŷk)T +R, (26)

Pxk,yk =

2nx∑
j=0

w
(c)
j (X−j,k − x̂

−
k )(Yj,k − ŷk)T. (27)

The final step is to update the prediction with the current
measurement

Kk = Pxk,yk (Pyk,yk)
−1
, (28)

x̂k = x̂−k +Kk(yk − ŷk), (29)

Pk = P−k −KkPyk,ykK
T
k . (30)

To make the estimation more robust, the UKF was im-
plemented in square root form (van der Merwe and Wan
(2001)). Extension to this filter for parameter estimation
can be done simply by considering the parameters as states
with zero dynamics, namely dp/dt = 0.

3.2 Moving Horizon Estimation

The MHE is an optimization-based estimation technique
which is based on the minimization of the error between
the measured output and the estimated output. The min-
imization considers measurement and state noise within
a time window, called horizon, in order to estimate the
current state. Once this state has been estimated, the
horizon slides one step ahead, takes a new measurement,
and the minimization is repeated. For further details please
refer to Robertson et al. (1996); Rao et al. (2003); Rawlings
and Mayne (2009). The state estimate at time step k
is given by solving, in general, a nonlinear programming
problem

min
x̂k−N|k,ζ̂,p̂

{
L(x̂k−N |k, ζ̂, p̂)

}
, (31)

subject to

e(x̂i|k) = 0 i = [k −N, ..., k], (32)

d(x̂i|k) ≤ 0 i = [k −N, ..., k]. (33)

The notation (·)i|j refers to the variable (·) at time i

estimated at time j, N is the horizon length, ζ̂ is the vector

on state noise [ζ̂k−N |k, ..., ζ̂k|k]. e(·) and d(·) represent
respectively equality and inequality constraints. The state

dynamics will be considered in the equality constraints.
Furthermore the concentrations are constrained to be
positive by the inequality constraints. In this work, the
following quadratic objective function is minimized

L(x̂k−N |k, ζ̂, p̂) =

∥∥∥∥x̂k−N |k − x∗k−N |kp̂− p∗
∥∥∥∥2
Pk−N|k

+

+

k∑
i=k−N

‖ζ̂i‖2Q +

k∑
i=k−N

‖ŷi − ỹi‖2R. (34)

The notation ‖x‖2A stands for the weighted vector norm
xTAx. The matrices Pk−N |k,Q and R are weights that
can be tuned by the user. The state vector x∗k−N |k is the

best estimate available of time k−N and parameter vector
p∗ are the best current parameter estimate. The first term
of the sum has the role to summarize the information the
MHE leaves out of the horizon. The matrix Pk−N |k can
be updated at every time step using a covariance update
algorithm, for example the covariance update of Section
3.1 (Rawlings and Mayne (2009)).

4. RESULTS AND DISCUSSION

Here the performance of the UKF and the MHE for mon-
itoring the concentration of PHB from the measurement
information is studied. Considering the system equations
of the model (Eq. (8)-(10), (15)-(17)) and the parameters
derived by Franz (2015), the observer estimates the states
x̂k at each time step k, while the measurement of the ab-
sorbance yk = Ak is taken as the input. For simulating the
plant and generating the measurement data, parameters
for the HCM (Eq.(8)-(10), (15)-(17)) and the measurement
equation (Eq.(18), kPHB = 4.76 l/g, kRES = 2.8 l/g) were
taken from Franz (2015). Normally distributed random
variables with zero mean and a variance of 0.1 are added
to the generated data to simulate measurement noise. If
not stated differently the initial values of the states are set
as

x0 = [20 1.5 0.18 0.125]
T
. (35)

The following tuning parameters are maintained constant
in each scenario. For the UKF, α = 0.001, κ = 0, β = 2,
Q = diag(10−12, 10−12, 10−12, 10−12), and R = 0.1. For
the MHE, N = 10, R = 1 and Q = diag(102, 104, 103, 103)
where diag(a) is a diagonal matrix with the vector a in
the diagonal. The sampling interval is 0.1 hours for both
observers.

4.1 Optimal Scenario

Here, the performance of both state estimators is com-
pared for an optimal scenario in which the estimators
use the same initial states and parameters as the sim-
ulation. Thus, it is assumed that the initial conditions
are known and only measurement noise is present. In
this case, there is no initial estimation error, hence P0 =
diag(10−3, 10−3, 10−3, 10−3). For the MHE the arrival cost
matrix is P = P−10 which, for simplicity, is kept constant at
all times. The results of these state estimations are shown
in Figure 2. For both observers the estimated states x̂k
were in good agreement with the true state despite the
measurement noise. Therefore, in the optimal scenario,
both observers are functional.
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Fig. 2. Estimates for the optimal scenario.The dynamics
of the states x̂k, estimated by both observers, the
simulated state x̂(t) and the measurement of the
absorbance Ak, which served as an input for the
observers, as well as the estimated absorbance values
Âk are shown.
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Fig. 3. Estimates for poorly guessed initial conditions.

4.2 Scenario with Unknown Initial Conditions

In an experimental context, the initial concentration are
usually not known exactly, e.g. error in media preparation
or inoculation. To test the performance of both observers
in such a scenario, the observers were tested with an error
of 10% on the actual initial substrate concentrations used
by the model. In this case P0 = diag(4, 0.0225, 0.001,
0.001) and P = diag(1, 105, 105, 105) apply. Figure 3 shows
that both estimators successfully converge to the actual
state.

4.3 Impact of Measurement Equation

In this section, the impact of the measurement equation on
the functionality of the observers is studied. In a previous
work the measurement equations was calibrated offline for
every experimental data set. As can be seen in Franz
(2015), kPHB and kres differ for each data set and are
therefore uncertain. Here, we analyze the influence of the
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Fig. 4. Estimates with uncertain measurement equation
parameters.

uncertain parameters on the functionality of the observers
using two different sets of measurement parameters, for
state estimation (kPHB = 4.76 l/g kRES = 2.8 l/g) and
simulation of the plant, respectively (kPHB = 3.79 l/g and
kRES = 3.4 l/g). As Figure 4 shows, the uncertainty in
the measurement equation impairs the functionality of
both observers in different extent. To further improve the
performance of the observers, they were extended in a way,
that allows to estimate the parameters (kPHB and kres)
and the states simultaneously. For the observers, the initial
parameter guesses are values randomly chosen within the
parameter range shown in Franz (2015) and the initial
concentrations are the same as in Equation (35).
The results of the simultaneous state and parameter es-
timation are shown in Figure 5. The overall performance
of both observers significantly improved. The estimated

parameters k̂PHB and k̂RES are not constant and differ
from the calibrated parameter values determined by Franz
(2015). The performance of the MHE observers was shown
to be more robust for the whole investigated range.

5. CONCLUSION

In this work the performance of an UKF and a MHE
was tested considering an HCM, which describes the
PHB production in the organism Cupriavidus necator. A
measurement equation was used to reconstruct the PHB
concentration from the absorbance measurement of the
culture broth.

Firstly, the observers were tested against uncertain initial
conditions and additive measurement noise. The results
showed that both observers converge to the modeled states
satisfactorily. Then, we demonstrated that the uncertainty
of the parameters of the measurement equation impairs
the functionality of both observers. To overcome these
uncertainties the observers were extended so as to achieve
a simultaneous parameter and state estimation, which
resulted in an improved performance of both observers.
Considering these results, in principle both state observers
can be used with HCMs for real-time process monitoring.
However, choosing the appropriate state observer remains
a trade-off between simplicity, robustness and the practica-
bility regarding the real plant. The smaller computational
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Fig. 5. Simultaneous estimation of states and uncertain
parameters.

effort and the easier tuning of the UKF tend to allow a
simple implementation which is of high importance for the
industrial applications. However, due to the slow dynam-
ics of biological processes, computational time does not
play an important role. The MHE solves a optimization
problem which requires a larger computational time but,
as it was shown, the convergence is generally superior.
Conversely, tuning the weighting matrices for the MHE
can be critical. In general, the weak observability of the
states hampers the robustness of both observers. Addi-
tional information, for instance, coming from delayed,
time-sparse offline or indirect measurements needs to be
taken into account. The MHE shows more flexibility in
terms of using additional information, such as delayed
measurements which can be handled easily and effectively
with the MHE. This last point will be addressed in future
research.

In general it can be concluded, that HCMs can be used
for state observation and have a high potential to improve
the performance of industrial biotechnological processes by
facilitating process control and optimization.
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