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Abstract:  

In industrial processes, various types of faults often propagate from one unit to another along information 

and material flows. In severe cases, fault propagation can eventually affect the entire plant, leading to the 

reduction in product quality and productivity, and even causing damages. In order to avoid these issues, 

effective root cause diagnosis is desired because the correct identification of the sources of process 

abnormalities is critically important for restoring the system to its normal condition in a timely manner. 

In recent years, the data-driven causality analysis method, such as Granger causality (GC) test, has been 

adopted to identify the causes of process faults. However, the conventional pairwise GC only considers 

the causal relationship between a pair of time series. In multivariate cases, repeated pairwise analyses are 

often conducted, which yet often give over-complex and misleading results. To solve this problem, in this 

research, the multivariate GC technique, which measures the conditional dependence between time series, 

is utilized to construct the causal map between process variables. In addition, the obtained causal map is 

further simplified by finding its maximum spanning tree, facilitating the identification of the root cause. 

The feasibility of the proposed method is illustrated by case studies. 

Keywords: root cause diagnosis, fault diagnosis, causality analysis, Granger causality, maximum 

spanning tree. 



1. INTRODUCTION 

Due to the rapid development of technology, the scale and 

complexity of many industrial plants is continuously 

increased. In order to ensure process safety and productivity, 

a large number of sensors are installed for data collection and 

process monitoring. In recent decades, data-driven 

multivariate statistical process monitoring (MSPM) 

techniques have been widely applied to both continuous and 

batch processes (Ge et al., 2013). 

According to (Chiang et al., 2004), a complete procedure of 

process monitoring involves four main steps: fault detection, 

fault isolation, fault diagnosis, and process recovery. 

Significant research efforts have been devoted to fault 

detection and isolation, where the purpose of fault detection 

is to determine when abnormal process behavior has occurred, 

and fault isolation aims to identify the process variables 

critical to the detected fault. However, root cause diagnosis is 

still a difficult task because of fault propagation across 

different process units. A large-scale industrial process often 

consists of various interconnected process units, such as 

chemical reactors, heat exchangers, distillation towers, etc. 

Thus a fault can easily propagate from one unit to another 

along information and material flows. The utilization of the 

feedback control loops makes the propagation mechanism 

more difficult to analyze. 

In recent years, causality analysis has received increasing 

attention in the research field of fault diagnosis, because a 

causal map can provide an intuitive way of representing the 

fault propagation pathways and revealing the root causes 

(Duan et al., 2014). Usually, the construction of a causal map 

requires the knowledge from a plant engineer (Chiang and 

Braatz, 2003; Chiang et al., 2015). In some applications, such 

information may be insufficient or too complicated to 

construct a causal map that is practical in root cause 

diagnosis. Therefore, data-driven causality analysis methods, 

such as Bayesian networks (Weidl et al., 2005), transfer 

entropy (Bauer et al., 2007), Granger causality (GC) analysis 

(Yuan and Qin, 2014), and dynamic time warping (DTW) (Li 

et al., 2016), have received increasing attention. It is noted 

that none of the methods outperforms the others in all the 
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situations. Just as the famous saying goes: “all models are 

wrong but some are useful” (Box, 1979) in specific 

applications. This work mainly focuses on GC analysis which 

investigates the flow of information between time series 

using a statistical hypothesis test.  

However, the conventional GC (Granger, 1969) only 

considers the causal relationship between a pair of time series, 

while industrial processes are multivariate in nature. For 

constructing the entire causal map, repeated pairwise 

analyses can be conducted. Nevertheless, pairwise GC is 

defined based on two principles (Granger, 1980): the cause 

happens prior to its effect, and the cause contains unique 

information about the future values of its effect over the 

period of analysis. In industrial processes, the second 

principle is often violated due to the correlation among 

variables. As a result, pairwise GC often gives over-complex 

and misleading results.  

In this research, the multivariate conditional GC technique 

(Barnett and Seth, 2014; Geweke, 1984) is adopted to 

overcome the above-mentioned problem and generate a more 

compact causal map. In addition, the obtained causal map is 

further simplified by finding its maximum spanning tree, 

facilitating the identification of the root cause. 

2. GRANGER CAUSALITY ANALYSIS 

2.1  Pairwise Granger Causality 

The concept of Granger causality was proposed in 1969 

(Granger, 1969). As a tool for investigating the causal 

relationship between the two time series, pairwise GC test 

has been widely used in various fields, based on the 

following two assumptions. 

I. The future can be affected by the past and present, not the 

other way around. 

II. The cause set contains no redundant information. In other 

words, the cause variables cannot be correlated. 

Consider two time series: X1  = (x1(1), x1(2), ..., x1(n)) and X2 

= (x2(1), x2(2), …, x2(n)). If X1  Granger-causes X2, the past 

and present values of X1 can help to forecast the future values 

of X2. To investigate such cause-effect relationship, a full 

auto-regressive (AR) model and a corresponding reduced 

model are built:  
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In these equations, a1j,l and b11,l are the model coefficients, ε1 

contains the residuals (i.e. prediction errors) of the full model, 

and ε1(2) contains the residuals of the reduced model. 

Obviously, the reduced model predicts the values of X1 by 

excluding the influence of X2 from the model. p is the model 

order defining the time lags included in the models, which 

can be specified by maximizing the Akaike Information 

Criterion (AIC) (Akaike, 1974) or the Bayesian Information 

Criterion (BIC) (Schwarz, 1978).  

An improvement in the prediction is observed when the 

variability of ε1 is significantly less than ε1(2), which can be 

qualified by conducting an F-test: 
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implies that there is Granger causality from X1 to X2. The 

hypothesis can be tested via an F-statistic defined as 
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where RSS0 is the residual sum of squares (RSS) of the 

reduced model, RSS1 is the RSS of the full model, and N is 

the total number of observations used to estimate the models. 

The null hypothesis is rejected if the F-statistic is greater than 

the confidence limit corresponding to a desired false-rejection 

probability.  

In the cases of root cause diagnosis, X1 and X2 represent the 

time series of two different process variables. Because the 

industrial processes are inherently multivariate, repeated 

pairwise analyses are often required to construct the entire 

causal map. However, the correlation among the process 

variables breaks the second assumption of the pairwise GC 

analysis, affecting the interpretation of the results. The 

multivariate GC analysis technique is better suited to such 

situations. 

2.2  Multivariate Conditional Granger Causality 

Conditional GC (Geweke, 1984) is a multivariate version of 

GC, which includes simultaneously all measured variables 

into the AR models. In conditional GC analysis, the full 

model has a form of 
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while the reduced model is defined as 
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In the above equations, J is the total number of the process 

variables under investigation, and xj (j = 3, …, J) include the 

time series of all variables except X1  and X2. 

By fitting the models in (5) and (6) and conducting the 

hypothesis test with the F-statistic defined in (4), the direct 

GC relationship can be discovered, while the indirect GC 
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conditional on other variables does not lead to the rejection of 

the null hypothesis. As a result, the causal map obtained by 

the conditional GC test is largely simplified and more 

meaningful comparing the results of the conventional 

pairwise GC, based on which it is easier to find the root cause 

of the process fault in diagnosis. 

3. MAXIMUM SPANNING TREE 

Although the utilization of the conditional GC technique is 

helpful in root cause diagnosis of process faults, the type I 

error, i.e. the incorrect rejection of a true null hypothesis, 

may still occur and make the results difficult to read. In 

addition, it is noted that the causal links identified by 

conditional GC do not necessarily correspond to the path of 

fault propagation. When the candidate set of the process 

variables is improperly selected for diagnosis, the resulting 

causal map may be misleading. Specifically, when redundant 

variables are included in the candidate set, the causal map 

identified by conditional GC often contains causal links 

irrelevant to the fault propagation and becomes unnecessarily 

complex, which is unfavorable for root cause diagnosis. 

Furthermore, the loops in the causal map make it more 

difficult to identify the root cause. In such situations, it is 

desired to further simplify the causal map and highlight the 

root cause variable. Here, the maximum spanning tree is 

introduced to solve the above-mentioned problems.  

As known, a causal map is a directed graph that represents 

the cause-effect relations. For root cause diagnosis, each node 

in the causal map represents a candidate process variable, 

while the edge with an arrow between a pair of nodes 

indicates a causal relationship between two variables. In this 

research, a weight is assigned to each arrow to indicate the 

strength of causality, which is equal to the F-statistic used in 

the conditional GC test. In doing this, the causal map has a 

form of the weighted directed graph.  

According to the graph theory, such a graph can be 

transformed into a spanning tree. The concept of spanning 

tree is originally developed for undirected graphs. By 

definition, a spanning tree T of an undirected graph G is a 

subgraph of G, which is a tree (i.e. a graph in which any two 

nodes are connected by exactly one path) including all of the 

notes of G with minimum possible number of edges. The idea 

of spanning tree can be generalized to directed graphs, e.g. 

(Gabow et al., 1986). 

In this research, the causal map discovered by the conditional 

GC test is simplified by finding its maximum spanning tree, 

where a maximum spanning tree of a weighted graph is a 

spanning tree with a maximum total weight among all the 

spanning trees. In a maximum spanning tree, each node has 

one incoming edge except the root (i.e. the starting point) and 

at least one outgoing edge except the endpoints. For a causal 

map, maximizing the total weight in the spanning tree is 

equivalent to retaining the most significant causal 

relationships during the simplification procedure. Therefore, 

it is expected that all uncritical links can be removed from the 

causal map, while the note corresponding to the root cause 

variable can be highlighted because it appears as the root of 

the tree which has only an outgoing edge and no incoming 

edge. 

The Chu-Liu/Edmonds’ algorithm (Chu and Liu, 1965; 

Edmonds, 1967) is modified to find the maximum spanning 

tree. The detailed steps are as follows. 

1. Choose an arbitrary node as the root. 

2. Discard the incoming edges of the root. 

3. For each node except the root, keep the incoming edge 

with the largest weight and discard all other incoming edges. 

Totally (J - 1) edges are retained. 

4. If these edges do not form any cycle, a maximum spanning 

tree is found. Go to Step 9. Otherwise, go to Step 5. 

5. “Contract” all the notes in each cycle into a single pseudo-

node and generate a new graph accordingly. 

6. In the new graph, the weight of the edge between two 

nodes u and v is defined as follows. 

1) If u is a node outside the cycle and v is a node in the cycle, 

then a weight w(u,vc) is assigned to the incoming edge from u 

to the pseudo-node denoted as vc.  
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where π(v) denotes the note which is the source of the 

incoming edge to v in the original graph. 

2) If u is a node in the cycle and v is a node outside the cycle, 

then a weight w(vc,v) is assigned to the outgoing edge from 

the pseudo-node vc to u.  

( , ) ( , )
c

w v v w u v .                                                                (8) 

 

3) If neither u or v is in the cycle, the weight of the edge 

between them is equal to w(u,v), which is same as the 

corresponding weight in the original graph. 

7. For each pseudo-node, select the incoming edge with the 

largest weight. Without loss of generality, suppose this edge 

connects a node (um) outside the cycle and a node (vm) in the 

cycle. Then, replace the original incoming edge of vm 

(selected in Step 3) by the edge from um to vm. In doing this, 

the cycle is eliminated. 

8. Go to Step 3. 

9. Choose another node as the root and then go back to Step 2, 

until each node has been selected as the root once. 

10. Compare the total weights of the generated maximum 

spanning trees and choose that with the maximum total 

weight as the final result. 

4. CASE STUDIES 

In this section, the Tennessee Eastman (TE) process (Downs 

and Vogel, 1993) is utilized to illustrate the feasibility of the 

proposed method. As a benchmark process, the TE process 
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has been widely used for testing various monitoring and 

control algorithms. It consists of five main units, including a 

reactor, a condenser, a separation tower, a stripper and a 

compressor. There are eight components in the streams of the 

plant, namely four reactants A, C, D and E, two products G 

and H, a byproduct F and an inert component B. Totally 52 

process variables, including 11 manipulated variables and 41 

measured variables, are recorded in both normal operation 

and abnormal situations triggered by 20 different types of 

faults. The sampling interval is 3 min. In each scenario, the 

fault occurs at the 161st sampling time point. The flowchart 

of the TE process and the variable list can be found in the 

literature (Russell et al., 2000). In the following of this paper, 

the process variables are denoted as Vj, where j is the variable 

index. 

For illustration, Fault 1 is considered, which is caused by a 

step change in the A/C feed ratio in Stream 4. In detail, the C 

feed is increased, while the A feed is decreased. The change 

of the A feed leads to a decrease of the amount of A in the 

recycle stream, i.e. Stream 5. Consequently, the composition 

of A in Stream 6 (V23) is also decreased. In order to 

compensate the influence of such disturbance, the feedback 

control system increasing the A feed in Stream 1 (V1), which 

eventually results in an increase of the A feed in Stream 6 

(V44). According to the process understanding, the root cause 

should be identified as V23, although a large number of 

variables are affected by this fault. 

For root cause diagnosis, a candidate variable set should be 

determined. Here, the principal component analysis (PCA) 

contribution plots (Westerhuis et al., 2000) are utilized for 

screening. Fig. 1 shows the average T
2
 contribution of each 

process variable between the 161st and the 240th sampling 

time points. The variables with the first 20 largest 

contributions are selected for further analysis. Because of the 

smearing effect (Van den Kerkhof et al., 2013), these 

variables are all outside the corresponding control limits. 

 

Fig. 1. Average T
2
 contribution of each process variable 

(Fault 1) 

Conditional GC test is conducted to discover the causal 

relationships among these 20 process variables. The result is 

shown in Fig. 2, which can be further transformed to a causal 

map (not shown here). In this figure, the x-axis denotes the 

indices of the cause variables, while the y-axis represents the 

indices of the effect variables. A solid block indicates that 

there is a Granger causality between the corresponding 

variable pair, which means the F-statistic is larger than the 

confidence limit corresponding to a false-rejection 

probability of 0.05. Therefore, a direct way to identify the 

root cause variable(s) is to look for the rows with no solid 

block. In Fig. 2, the variables correspond to the null rows are 

V30, V36, V43 and V44. Obviously, such results are not correct, 

because the real root cause is V23. Among the identified 4 

variables, only V44 is directly affected by the root, i.e. V23. 

The reason is multi-factorial. The inherent errors in statistical 

inference, the redundant candidate variables, the non-

stationary and nonlinear characteristics contained in variable 

trajectories, etc. all may lead to misleading diagnosis results. 

Therefore, it is necessary to implement the maximum 

spanning tree. 

 

Fig. 2. Result of conditional GC test (Fault 1) 

The result is shown in Fig. 3. It is clear that V23 is the root 

cause of Fault 1 because it has no incoming edge and appears 

as the root of the tree. Also, this variable affects V1 and hence 

V44. Such result is confirmed with the process understanding. 

Nevertheless, the maximum spanning tree does no retain the 

entire information of fault propagation, although it 

successfully highlights the root cause variable. The reason is 

that, in a tree, any two nodes are connected by exactly one 

path. However, in an industrial plant, recycle streams and 

feedback control loops widely exist. The real propagation 

path of a process fault is seldom describable with a tree. 

Therefore, we do not recommend tracing the fault 

propagation with the maximum spanning tree. This method is 

developed mainly for the easier identification of the root 

cause of a fault. 

The same procedure is also used to diagnose Fault 7 which is 

related to the C header pressure loss. The feed flow of stream 

4 sharply drops when the event occurs to the process. 

Consequently, the level of the reactor becomes lower than 

usual and many process variables are affected because of 

fault propagation. In order to maintain the reactor level, the 

feedback controller adjusts the flow rate of stream 4 (V4) by 
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manipulating the corresponding valve opening (V45). 

Therefore, V45 and V4 are the most likely root cause variables.  

20 process variables are selected based on the contribution 

plot shown in Fig. 4, based on which conditional GC test is 

adopted for causality analysis. The result is plotted in Fig. 5, 

according to which V27 and V30 are mistakenly chosen to be 

the root cause. The implementation of the maximum 

spanning tree largely improves the result. As shown in Fig. 6, 

V45 is the root of the tree, while V4 is the variable most close 

to the root. Such a result is reasonable. Again, it is 

emphasized that the path between the nodes on the tree is not 

necessarily in accordance with the path of fault propagation, 

especially for the nodes far from the root. 

 

Fig. 3. Result of maximum spanning tree (Fault 1) 

 

Fig. 4. Average T
2
 contribution of each process variable 

(Fault 7) 

6. CONCLUSIONS 

In recent years, the causality analysis technique, GC, is 

utilized in root cause diagnosis of process faults. However, 

its performance may be affected by the correlation among 

process variables. In this research, multivariate conditional 

GC is adopted to handle this issue. In addition, the diagnosis 

performance is further improved by using the maximum 

spanning tree. The feasibility of the proposed method is 

illustrated by the case studies on the TE process. 

 

Fig. 5. Result of conditional GC test (Fault 7) 

 

Fig. 6. Result of maximum spanning tree (Fault 7) 

In the end of this paper, we would like to give some future 

perspectives on the related research topics. First, in a strict 

sense, GC test, as well as many other causality analysis tools, 

such as transfer entropy, is only suited to analyze the 

causality between stationary time series. In industrial 

processes, the trajectories of process variables often become 

non-stationary when abnormal events occur, violating the 

presupposition of GC test. This is an important issue that 

affects the performance of root cause diagnosis. The 

utilization of DTW may solve the problem in a certain sense 

(Li et al., 2016). However, DTW is only suited to the cases 

where the cause and effect time series have a similar shape. It 

is necessary to devote more research efforts on this topic. 

Second, the causality analysis results are sensitive to the 

selection of the candidate time series. In the context of 

process monitoring, fault isolation, i.e. the identification of 

faulty variables, is an important preparation step before 

conducting root cause diagnosis. It is recommended to use 

the isolation methods that can avoid the smearing effect 

(Kuang et al., 2015). Third, in practice, the diagnosis result is 
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often affected by the selection of the time window in which 

the causality analysis is conducted. By using a method like 

GC, the task of causality analysis is similar to a model 

identification problem. During different time periods, the 

system may have different excitation signals which lead to 

different identification results, i.e. causal maps. Fourth, a 

related question is whether normal operation data should be 

used in causality analysis. As mentioned, the identified causal 

relationships do not necessary indicate the path of fault 

propagation. Therefore, it should be very careful in result 

interpretation. Usually, using fault data only may highlight 

the causality related to fault propagation, while incorporating 

normal operation data may provide a more complete view of 

the cause-effect relationships among process variables. Fifth, 

the parameter determination in the GC models is another 

issue to consider. For example, the conventional GC assigns 

a same value to the time lags of different variables. It is doubt 

whether it is a best way. In summary, it is of great need to 

bridge the gaps between the statistical theories of causality 

analysis and their industrial applications on root cause 

diagnosis. 
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