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Abstract: Obtaining desirable process model and determining its applicable range play an important role 
in realizing the significant load change for HTR-PM. Based on the observation that several parameters in 
HTR-PM model change with conditions and sufficient sampling is impractical, a trust-region based load 
change strategy is developed in an iterative framework that integrates parameter approximation and real-
time optimization. According to this method, the basic model is determined through a systematic 
approach for parameter estimation that is designed to get rid of unreliable estimation. Plant derivatives 
are exploited to extend applicability of the local basic model. When applying the extended model to 
operation of load change in the trust-region framework, model evaluation is implemented in each 
iteration so that the applicable range of the approximate model is appropriately determined. Consequently, 
both model accuracy and applicable range of the local model are considered in this iterative framework. 
Case study of load change from 100% to 50% reactor full power demonstrates effectiveness of the 
proposed method. 
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1. INTRODUCTION 

High temperature gas-cooled reactor (HTR) is one of the 
promising technologies in building the Generation IV nuclear 
energy systems (Demick L. et al. 2010). The first in the world 
multimodular HTR demonstration plant, HTR pebble bed 
module (HTR-PM), has been under construction since 2012 
at Shidaowan, China (Zhang Z. et al., 2016) and is expected 
to start commercial operation in 2018. 

The multi-modular structure of HTR-PM is illustrated in Fig. 
1. Each nuclear steam supply system (NSSS) mainly includes 
one reactor, one steam generator and one helium blower. 
Steam from the two NSSS modules shares a common steam 
header and promotes the turbine jointly to generate electricity 
(Dong Z. and Huang X., 2013).  
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Fig. 1. Schematic of HTR-PM. 

Thermal-hydraulic process is essential to HTR-PM. The cold 
helium (about 523.15K) is pressurized by the blower and then 
goes into the cold gas duct. It cools the side reflector when 
flowing through its channels from the bottom to top. Then the 
helium reaches the reactor core and passes through the pebble 
bed from the top to bottom, during which it absorbs a large 
amount of heat and is heated to about 1023.15K. The hot 
helium flows through the hot gas duct into the primary side 
of the steam generator, transferring heat through the metal 
tube wall to the water flowing in the secondary side. After 
this heat exchange, the water turns into superheated steam 
and the helium is cooled back to 523.15K. 

Mechanism of HTR-PM is complex (Li H. et al., 2008) and 
little experience can be borrowed from operation of its single 
reactor counterpart. Moreover, the reactor of each NSSS is 
designed to have a wide operating range, from 30% to 100% 
reactor full power (RFP). The accurate mechanism model that 
is applicable to the full operating range is usually not 
available. In addition, some key outputs of HTR-PM have 
design values. Deviating far from these values would 
jeopardize safe, reliable and economical operation of the 
plant and thus is forbidden. These factors present challenges 
to operation and control. Strategies are therefore desirable to 
address significant load change of HTR-PM, which is typical 
in coping with the ever-changing power demand. 

A trust-region based load change strategy is proposed in this 
paper, which integrates parameter approximation and real-
time optimization. The systematic approach for parameter 
estimation provides locally accurate model with limited 
measurements. In order to extend the applicable range of the 
local model, parameters varying with conditions are 
approximated using plant derivatives. So far, an appropriately 
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determined applicable range of the approximated model is 
needed to confine the optimization problem to a valid model. 
Consequently, the framework of trust-region method is 
adopted, which applies a sequence of local models in sought 
of the optimal operations for the significant load change of 
HTR-PM. 

2. ITERATIVE FRAMEWORK FOR HTR-PM 
OPERATION 

Significant load change of HTR-PM usually cannot be 
completed once at all for safety and operation limitations. A 
direct method is to implement the task by taking a sequence 
of relatively small load change steps. This can be addressed 
by implementing parameter estimation (PE) and real-time 
optimization (RTO) in an iterative manner. At each step, (i) 
apply the current inputs to the plant and solve a PE problem 
with the corresponding measurement to determine the model 
parameters; (ii) use the model with the estimated parameters 
to determine the inputs that minimize some performance 
index.  

Referring to framework of classical iterative two-step (ITS) 
method, the stepsize of maximal load change in each RTO 
step is given by 2%RFP (conservative) and 8%RFP 
(aggressive), respectively. The freedom for operation leaves 
to 7 inputs, including external reactivity, helium inlet flow 
rate, and feedwater flow rate of both NSSS modules, and 
opening of the valve prior to the turbine. The RTO objective 
is chosen for the load change task to be the differences 
between the model predicted and design values of the key 
outputs at the target load level. The RTO problem is 
formulated as 
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where objective function ( )u measures the differences 

between vectors of key outputs eney R and their design 

values 
*

eney R  at the target load level, and q  represents the 

weighting factor. yny R , unu R  and xnx R  are the 

process outputs, inputs and states, respectively. pnp R  are 

parameters. mf  denotes the plant model which has 996 

variables and c  are constraints on the inputs. The last 
constraint confines the level of load change in each RTO step 
to a given constant, which can be reflected by the change of 
relative reactor power rn . 

Figs. 2 and 3 illustrate the performance of the ITS method in 
the case where both reactors change from 100%RFP to 
50%RFP synchronously. Results of the estimated heat 
transfer coefficients, the optimal operations based on the 
estimated model and the resulting key plant outputs are 
analyzed here. Clearly, aggressive strategy suffers larger 
model mismatch as shown in Figs. 2a and 3a about the heat 

transfer coefficients by the model and the plant, because of 
larger steps. The resulting outputs and corresponding inputs 
by these two strategies are presented in Figs. 2b-2c and Figs. 
3b-3c, respectively. Being less efficient than aggressive 
strategy (25 steps VS 7 steps), the conservative one leads to 
safe operation while the aggressive one gives rise to safety 
violation from outlet steam temperature of the turbine. 
Moreover, aggressive strategy has all the key outputs 
deviated more from design values than those of the 
conservative one, which can be reflected from plant 
performance at the target load (77.98 VS 67.24), i.e. the 
objective function in problem (1) evaluated with the real 
plant outputs at the end of load change. This can be attributed 
to more obvious mismatch of aggressive strategy than that of 
the conservative one, which indicates the stepsize, confining 
the magnitude of input correction, has important influence on 
the performance of the ITS method. 
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 (2a) Heat transfer coefficients 
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 (2b) Key outputs of HTR plant 
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(2c) Input sequence 

Fig. 2. Load change by ITS method with conservative steps. 
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(3b)Key outputs of HTR plant 
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(3c) Input sequence 

Fig. 3. Load change by ITS method with aggressive steps. 

Another implementation of the iterative framework is the 
integrated system optimization and parameter estimation 
(ISOPE) method, which improves convergence performance 
of the ITS method with RTO problem reformulation (Chen C. 
and Joseph B., 1987; Yip W.S. and Marlin T.E., 2004). 
Methods of this class were developed later to remove the PE 
stage to be more efficient, at the cost of losing the knowledge 
of parameters with physical meaning (Marchetti A. et al., 
2009; Tatjewski P. et al., 2001). In addition, the issue 
remains unsolved that how much input correction should be 
implemented from one iteration to the next. 

3. INTEGRATION OF LOCAL MODEL WITH REAL-
TIME OPTIMIZATION 

As can be seen in Section 2, the locally accurate model 
around the current conditions may be unable to handle the 
relatively small load change steps without proper application 
range. This is because the new arriving status of the plant 
after the load change step is different from the one where the 
model was estimated before. The mismatch between the plant 
and model may lead to invalid operations and safety 
requirements posed on key outputs may be violated. Hence, a 
predictive model with extended applicability is desirable. 
Moreover, correction of inputs should be confined to a valid 
model. These two aspects contribute to motivation for the 
proposed strategy in this paper. 

3.1  Parameter Selection and Local Model Extension 

The parameter estimation problem can be formulated in the 
standard weighted least-squares form 
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where ( )E p  measures the goodness of fit between the model 

prediction yny R  and the measured outputs yny R . pc  are 

constraints on the parameters and w  represents the 
weighting factor.  

Determining the estimable parameter set is an important step 
for avoiding the ill-conditioning caused by over-
parameterization, data insufficiency and noise. Reliability 
evaluation of the estimation should be focused on as well, 
which in turn refines the parameter subset. Accordingly, 
parameter set selection characterized by subset selection, 
reliability evaluation and subset refinement runs through the 
procedure of parameter estimation. The overall steps for 
parameter estimation are illustrated as follows: 

 (i) To select the estimable parameter set, numerically linear 
dependent parameters are clustered into the same group (Chu 
Y. and Hahn J., 2008). In each group, the parameter with the 
largest effect on outputs is selected to make up the initial 
subset for estimation. 

(ii) Problem (2) is solved. As the resulting parameter subset 
from (i) may be refined after reliability analysis of the 
estimates, problem (2) will be re-solved until all the estimates 
meet the reliability requirements. 

(iii) Confidence intervals are computed to access validity of 
the obtained estimates (Marsili-Libelli S. et al., 2003). If not 
all the estimates are desirable, the parameter with the most 
serious violation of the requirements is fixed at the nominal 
value, and the others in the reduced subset are re-estimated 
by solving problem (2). Otherwise, the optimal subset and 
corresponding estimates are obtained. 

However, the model derived from single data set can be only 
appropriate for operations around this point. And extension 
of the applicability is necessary to acquire a predictive model. 
Parameters pnp R in HTR-PM model can be divided into 

two categories. cnp R  is the vector of parameters that vary 

slowly with respect to load change, and thus can be treated as 
constants. An example of such parameters is helium leakage 
ratio. tntp R  is the vector of are parameters that are also 

estimable under the current conditions whereas change 
significantly with load, and thus have varying values. The 
example is heat transfer coefficients as shown in Figs 2a and 
3a. To extend applicability of the model determined by ku , 

plant derivatives are exploited to approximate the load-
related parameters tp  by 

ˆ( ) ( ) ( )/
tp t t T

k k k km u p p u u u                         (3) 

This is nothing but a linear approximation of tp  around 

condition ku  where the estimates ˆ t
kp  are obtained. The 

linearization term /t
kp u   represent the sensitivities of 

parameters tp  with respect to the inputs. Finite difference is 

applied to calculate /t
kp u  in this paper, which requires 

consecutive perturbations to the process inputs and the 
corresponding estimation of tp .  

3.2  Trust-Region Based Load Change Strategy 

Taking advantage of the extended local model, the overall 
RTO problem for load change is formulated as 
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where ( )c u  are constraints on the inputs, k  is iteration 

related and constrains operation u  to a limited region around 
the current conditions ku . The last constraint is imposed to 

confine the optimization to a valid model. x  and y  are 

omitted in mf  as they are determined by u . 

The algorithm is stated below, where the merit function   is 

exploited to balance between reducing the objective function 
and satisfying the constraints, and the input irrelevant part p  

is omitted for simplicity of description. 

Algorithm: Trust-region based iterative model 
approximation and RTO 

Step 0 (Initialization): Give the current operation conditions 

0u  which correspond to the initial level of load and the initial 

trust-region radius 0 . Choose constants 0 10 1     

(with 1 0  ), 0 1 inc    , max 0 min     , and 

termination tolerance t . Set 0k  . 

Step 1 (Parameter estimation): If merit function of plant 
( , ( ))t

k k tu p u  , stop. Otherwise, estimate the heat 

transfer coefficients to obtain ˆ t
kp .  

Step 2 (Model approximation): Calculate sensitivities 
/t

kp u   and approximate the parameters with (3).  

Step 3 (Step calculation): Solve problem (4) with solution 

1ku  . 

Step 4 (Model evaluation): Apply 1ku   to the plant and 

compute 

1 1

1 1

( , ( )) ( , ( ))

ˆ( , ) ( , ( ))
t

t t
k k k k

k t p
k k k k k

u p u u p u

u p u m u

 


 
 

 





 

If 0k  , restore 1k ku u  . 

Step 5 (Trust-region radius adaptation): Set 

max 1

1 min 0 1

min

min{ , } if  ,

max{ , } if  ,

.

inc k k

k k k

otherwize

  
   

  
     


 

Let 1k k  , go to Step 1. 

According to this method, the local model is obtained by 
parameter approximation which extends applicability of the 
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basic estimated model through plant derivatives. When 
realizing load change in the trust-region framework, the 
resulting approximate model is evaluated in each iteration, 
based on which its applicable range is appropriately 
determined. Therefore, parameter approximation and real-
time optimization is implemented iteratively, and accordingly, 
the load change progress is promoted through the more 
predictive model with proper application range.  

4. NUMERICAL RESULTS 

Result of parameter selection is first given. For HTR-PM, 
there are 33 measured outputs. After procedures of parameter 
selection and estimation, only the estimation of helium 
leakage ratio and load related centre heat transfer coefficient 
of the economizer in both NSSS modules meet the reliability 
requirement. We conclude in this case that based on the 
available single data set, at most four of the parameters can 
be estimated with desired level of reliability.  

Based on the estimated model, the same load change of HTR-
PM as in Section 2 is realized here by the trust-region based 
strategy. Fig. 4 displays the resulting heat transfer 
coefficients, key outputs and process inputs, with the 
performed model updates at iterations marked by ‘*’.  

In this case, 0k   indicates all the iterations are successful. 

And a sequence of operations are generated, which lead key 
outputs to meet the safety requirements during the load 
change process. Moreover, much fewer steps (4 steps) are 
implemented to achieve the target load and plant performance 
at the end of iterations significantly reduces to 1.18 compared 
with strategies in Section 2. In particular, at the end point, 
key outputs as shown by Fig. 4b stay apparently closer to 
their design values than the outputs in Figs. 2b and 3b. This 
suggests advantages of the predictive and appropriately used 
model, due to the step-wise update of model and trust-region 
radius.  
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Fig. 4. Load change by trust-region based strategy. 

5. CONCLUSIONS 

A trust-region based strategy for significant load change of 
HTR-PM is developed in this paper, which aims at 
constructing a desirable model and properly determining its 
applicable range. Applicability of the basic model, which can 
be estimated well via single data set, is extended through 
exploiting plant derivatives so that a local model is acquired. 
Here, parameter selection and estimation contribute to the 
reliable basic model. When applied to the load change task in 
trust-region framework, the extended model is confined to an 
appropriate operating range which is determined by model 
evaluation. At the same time, model update is performed at 
each iteration to maintain a valid approximation to the plant. 
The case study of load change from 100%RFP to 50%RFP 
demonstrates effectiveness of the proposed strategy. 
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