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Abstract: Optimization-based iterative learning control (OILC) has been widely applied to
batch processes due to its fast convergence, good control performance and ability to handle
constraints. However, how to guarantee constraint satisfaction and convergence of tracking
error in the presence of unknown system nonlinearity remains open in the framework of OILC.
It is important to address this issue since unknown nonlinearity is common in practice and
detrimental to good control performance. In this paper, we propose a tube feedback OILC to
investigate the applicability of linear-model based control strategy on batch processes with an
unknown nonlinear term. First, a state feedback control law is designed to stabilize the system.
The stabilized system is then decomposed into two subsystems: repeatable and unrepeatable
subsystems; Second, an invariant set of states corresponding to the unrepeatable subsystem
is computed, based on which an OILC is further developed for the repeatable subsystem to
improve the control performance. Meanwhile, the feedback controller steers the states within a
tube around the trajectory of OILC. In this way, convergence and constraint satisfaction are
ensured simultaneously. Compared with the currently existing methods, the proposed method
has the following advantages: (1) generality covering both stable and unstable systems; (2) low
computation complexity; and (3) rigorous stability. The simulation results on injection molding
velocity control demonstrate that the proposed method has superior performance.
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1. INTRODUCTION

Batch process plays an important role in manufacture and
chemical industry with high-value added due to its versa-
tility. Precise control of key variables in the process has a
significant impact on product quality. A growing attention
is devoted to batch process control in recent years (Cao
et al. (2014),Cao et al. (2016b),Wang et al. (2017),Wang
et al. (2018)). However, the inherent nonlinearity in batch
processes introduces difficulty to control strategy design:
controllers designed based on nonlinear model, such as
nonlinear model predictive control, have intensive on-line
computation (Nagy and Braatz (2003),Jia et al. (2013));
contrarily, controllers designed based on a linear model can
efficiently lower computation complexity, but the perfor-
mance is not good enough due to the existent of signifi-
cant model mismatch (Yang and Gao (2000)). To reduce
the model mismatch in the linear model-based design,
optimization-based iterative learning control is preferred,
in the framework of which model mismatch is compensated
by prediction errors of previous cycles and control inputs
are derived by optimizing a certain performance criteria.
This idea has been widely adopted (Lee and Lee (2003),Shi
et al. (2006),Lu et al. (2015b),Lu et al. (2018)).

Model mismatch in OILC design is often assumed to be
cycle-wise invariant and treated as repetitive disturbances,
as shown in Foss et al. (1995). However, this assumption
does not hold if the model mismatch is induced by lin-
earization. It is well known that model mismatch induced
by linearization depends on system states and in general
not cycle-wise invariant. Researchers later developed algo-
rithms which are robust against bounded non-repetitive
disturbances, such as Liu and Wang (2012). These meth-
ods can be extended to handle unknown nonlinearity by
treating the model mismatch as a combination of repetitive
and non-repetitive disturbances and assuming the non-
repetitive part has a fixed upper bound. To guarantee
the existence of the upper bound, cycle-wise differences
on inputs and states have to be regulated into a certain
region by hard constraints. This introduces a new question:
if the optimization problem consistently feasible after the
incorporation of those hard constraints? If not, control
performance may degrade dramatically when infeasibility
occurs. The key issue considered in this paper is how
to design an OILC which is able to guarantee cycle-
wise convergence as well as consistent feasibility despite
of unknown nonlinearity. It is noted that simultaneous
guarantee of convergence and constraint satisfaction was
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studied in Lu et al. (2015a) and Lu et al. (2016). However,
both of the works are for linear systems.

In this paper, a tube feedback OILC scheme is proposed
for reference tracking. The design borrows the idea of tube
model predictive control, which is a well-known approach
to handle bounded disturbances in MPC design (Langson
et al. (2004)). First, model mismatch induced by lin-
earization is decomposed into repeatable and unrepeatable
parts, following which, the original system is decomposed
into repeatable and unrepeatable subsystem accordingly.
Similar to the tube MPC, a state feedback controller is
then designed such that the states corresponding to the
unrepeatable subsystem are regulated into an invariant
tube. Second, an OILC which actually determines the cen-
ter of the tube is further designed to reject the repeatable
mismatch and enhance tracking performance from cycle to
cycle. In this way, cycle-wise convergence and constraint
satisfaction are ensured simultaneously.

Albeit the advantage on explicit guarantee of convergence
and feasibility, the proposed method has less restrictions
than other existing OILC algorithms. The only requisite
is that the system should be “stabilizable’, while many
existing OILC algorithms have strict requirements of the
controlled system. For example, a common type of OILC
is designed based on an minimization of the predicted
tracking error over the entire cycle, as shown in Lee et al.
(2000) and Chin et al. (2004). Such an optimization is
based on a lifted system model, which is only available
when the system is stable. If the system subjects to un-
known disturbances and constraints, this type of method
can not be directly extended to unstable systems by sta-
bilizing the system first. There are also methods (Liu and
Wang (2012)) which are devised by solving linear matrix
inequalities (LMIs) induced by a 2D Lyapunov function,
which are limited by the feasibility of the LMIs.

The rest of the paper is arranged as follows: Section 2
gives the formulation of the problem; Section 3 details
the controller design; Section 4 provides stability analysis;
Section 5 presents simulation results, and Section 6 draws
the conclusions.

2. PROBLEM FORMULATION

A nonlinear batch process can be represented by a linear
model plus a nonlinear term (Gao et al. (2014)) as

x(t+ 1, k) =Ax(t, k) +Bu(t, k) + g(x(t, k), u(t, k)),

y(t, k) =Cx(t, k).

Here t ∈ [0, tn − 1] is the time index. tn is the length of a
cycle. k ∈ [1,∞) is the cycle index. x ∈ Rns is the system
state. u ∈ Rni is the input. y ∈ Rno is the output. States
and outputs are assume to be measurable or observable
(Cao et al. (2016a), Cao et al. (2016c)). System dynamic
matrices A, B and C are arranged in proper dimensions.
The pair (A,B) is stabilizable. In addition, it is assumed
that the initial states in each cycle are the same, namely
x(0, k) = x(0, k − 1) = · · · = x(0, 1) = x0. The nonlinear
term g satisfies Lipschiz condition as

‖g(u1)− g(u2)‖∞ ≤ L‖u1 − u2‖∞, (1)

with L a global Lipschiz constant. For simplicity of nota-
tions, it is assumed that g is solely a function of input u.
Then, the system model is simplified as

x(t+ 1, k) =Ax(t, k) +Bu(t, k) + g(u(t, k)), (2)

y(t, k) =Cx(t, k).

For more general cases, the computation will become more
complex but the underlying idea remains the same.

Define a polytopic set U in cycle k as

U(k) = {u : ‖u(t, k)− u(t, k − 1)‖∞ ≤ δ(k)}. (3)

An input constraint is posed as

u(t, k) ∈ U(k), (4)

such that the cycle-wise variation of the nonlinear term g
is bounded as

‖g(u(t, k))− g(u(t, k − 1))‖∞ ≤ Lδ(k) (5)

according to (1). Define

de(t, k) = g(u(t, k − 1)) = x(t+ 1, k − 1)

−Ax(t, k − 1)−Bu(t, k − 1). (6)

and dδ(t, k) = g(u(t, k))−g(u(t, k−1)). It is noted that de
and dδ split the nonlinear term into cycle-wise repeatable
and unrepeatable parts. Moreover, in view of (4) and (5),
dδ is bounded in the set F(k) as

dδ(t, k) ∈ F(k) (7)

with F(k) defined as

F(k) = {f ∈ Rns : −Lδ(k) ≤ fi ≤ Lδ(k)}. (8)

Here fi is the i-th coordinate of the vector f .

Denote the tracking reference as yr(t) with t ∈ I[0,tn−1].
The control objective is to steer the output y(t, k) to a
given reference yr(t) despite of the unknown terms de(t, k)
and dδ(t, k), meanwhile, maintain the input confined to
U(k).

3. CONTROLLER DESIGN

In the section, details of the controller design are given.

3.1 System decomposition

To guarantee time-wise stability, a state feedback gain K is
selected to stabilize the system, namely keep the spectral
radius ρ(A + BK) < 1, following which the structure of
the controller is fixed as

u(t, k) = Kx(t, k) + u0(t, k). (9)

The second term u0(t, k) is to be induced by ILC for
reference tracking and repeatable disturbance rejection.

Define Ak = A + BK. The repeatable subsystem is
constructed with respect to de(t, k) as

x̄(t+ 1, k) =Akx̄(t, k) +Bu0(t, k) + de(t, k). (10)

By taking difference between (2) and (10), the unrepeat-
able subsystem is constructed as

x̂(t+ 1, k) =Akx̂(t, k) + dδ(t, k), (11)

with x̂(t, k) = x(t, k)− x̄(t, k). Set x̄(0, k) = x(0, k) = x0,
x̂(0, k) = 0.

Accordingly, the inputs can also be decomposed into two
parts. Define ū(t, k) = Kx̄(t, k) + u0(t, k) as the input
corresponding to the repeatable subsystem and

û(t, k) = Kx̂(t, k) (12)

as the input corresponding to the non-repeatable subsys-
tem. Furthermore, the tracking error satisfies
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e(t, k) =yr(t)− y(t, k) = yr(t)− Cx̄(t, k)− Cx̂(t, k).
(13)

Thus, define

Repeatable: ē(t, k) = yr(t)− Cx̄(t, k) (14)

and

Unrepeatable: ê(t, k) = −Cx̂(t, k). (15)

To this end, the original system has been decomposed into
two subsystems.

3.2 Preliminaries of invariant sets

Note from (7) that dδ(t, k) ∈ F(k) for any t and k. Based
on (11), according to Theorem 4.1 in Kolmanovsky and
Gilbert (1998), it can be concluded that

Lemma 1. Given that the spectral radius of A+ BK less
than 1, dδ(t, k) contained in the polyhedral set F(k) and
x̂(0, k) stays at the origin, there exists a polyhedral robust
positively invariant set Ωx(k) on x̂(t, k) in cycle k such
that
(i) for any x̂(t, k) ∈ Ωx(k), x̂(t+ 1, k) satisfying (11) stays
in Ωx(k);
(ii) the set Ωx(k) contains the origin 0.

In view of the item (ii) in Lemma 1, we have x̂(0, k) ∈
Ωx(k). Moreover, by recursively applying (i), it can be
proved that x̂(t, k) ∈ Ωx(k) for any t.

Remark 1. Generally, the invariant sets in Lemma 1 are
not unique. In order to reduce conservativeness, the min-
imal robust positively invariant (mRPI) set is adopted.
Methods on computing mRPIs are provided by Kol-
manovsky and Gilbert (1998). Briefly speaking, a mRPI
is computed based on sequential Minkowski summation:

Ωx(k) =

∞∑
i=0

AikBF(k). (16)

Toolboxes shown in Herceg et al. (2013) can be used to
compute the set.

According to (12), the set of û(t, k) can be characterized
by a linear mapping as

Û(k) = {û = Kx̂ : x̂ ∈ Ωx(k)}. (17)

For any t and k it can be easily proved that û(t, k) is

bounded in the set Û(k) since Ωx(k) is a compact set and
the mapping in (12) is continuous. Similarly, according to

(15), ê(t, k) stays in Ê(k) which is a polyhedral set defined
as

Ê(k) = {ê = Cx̂ : x̂ ∈ Ωx(k)}. (18)

Since ū(t, k) and û(t, k) are governed by u(t, k) = ū(t, k)+
û(t, k), to guarantee input constraint fulfillment, ū(t, k)
should be steered to a set Ū(k) according to Lemma 2.

Lemma 2. Given a û(t, k) ∈ Û(k), if ū(t, k) satisfies

ū(t, k) ∈ Ū(k) with Ū(k) = U(k) ∼ Û(k), then it can
be guaranteed that

u(t, k) = û(t, k) + ū(t, k) ∈ U(k).

Here ’∼’ denotes Pontryagin difference. This lemma can
be directly proved by Theorem 2.1 in Kolmanovsky and
Gilbert (1998). In addition, as stated in Section 3.1.2 in

Blanchini and Miani (2007), C-set and 0-symmetric are
defined as:

Definition 1. (C-set): A C-set is a convex and compact
subset of Rn including the origin as an interior point.

Definition 2. (0-symmetric): A C-set S is 0-symmetric if
x ∈ S ⇒ −x ∈ S.

According to Definition 1 and 2, it can be checked that
the set F(k) is a 0-symmetric C-set. Moreover, it can also
be proved that

Proposition 1. The set Ωx(k), Û(k) and Ê(k) are all 0-
symmetric C-sets.

3.3 Design of OILC

Section 3.2 tells that the states, inputs and tracking error
corresponding to the unrepeatable subsystem are bounded
in the set Ωx, Û and Ê respectively, based on which an
OILC can be applied to the repeatable subsystem and
devised by a quadratic optimization.

Problem 1.

min
δ(k),∆ku0(t,k),ē(k)

‖ē(k)‖22 + ‖
√
Rw∆ku0(k)‖22

s.t. x̄(t+ 1, k) = Akx̄(t, k) +Bu0(t, k)

+ de(t, k), t = 0, 1, . . . , tn, (19)

ē(t, k) = yr(t)− Cx̄(t, k) (20)

Kx̄(t, k) + u0(t, k)− u(t, k − 1) ∈ Ū(δ(k)),
(21)

‖ē(k)‖2 +
√
tn‖ê(k)‖∞ ≤ ‖ē(k − 1)‖2

+
√
tn‖ê(k − 1)‖∞, (22)

ē(k) = [ē(1, k)T ē(2, k)T . . . ē(tn, k)T ]T ,

u0(k) = [u0(0, k)T , . . . u0(tn − 1, k)T ]T ,

∆ku0(k) = u0(k)− u0(k − 1).

The first term in the objective function is to minimize the
predicted tracking error corresponding to the repeatable
subsystem over the entire cycle. The matrix Rw ∈ Rni×ni

is positive definite working as a penalty weight on the
input term to regulate its variation. Eq. (19) and (20) give
the system equations. The constraint in (21) is used to
ensure input constraint satisfaction. The inequality (22)
guarantees a monotonic decrease on ‖ē(k)‖2+

√
tn‖ê(k)‖∞

which is an upper bound of the tracking error in cycle
k. The variable δ(k) is used to determine the range of
variation on ∆ku(t, k) such that the convergence condition
in (22) can be satisfied.

3.4 Analysis of computation complexity

In this section, we analyze the computation complexity of
Problem 1.

Proposition 2. Problem 1 is a quadratic constrained
quadratic programming.

Proof : According to Proposition 1, the set U(k), Û(k) and

Ê(k) are polyhedral C-sets, they can be denoted by linear
inequalities as
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Fig. 1. Illustration of the control scheme.

Û(k) = {u : M0u ≤ δ(k)N0},
U(k) ∼ Û(k) = {u : M1u ≤ δ(k)N1},

Ê(k) = {e : M2e ≤ δ(k)N2},
Thus, (21) is equivalent to M1(Kx̄(t, k)+u0(t, k)−u(t, k−
1)) ≤ δ(k)N2. It is linear on the variable δ(k), x̄(t, k) and

u0(t, k). Given ê(k) ∈ Ê(k), we have

‖ê(k)‖∞ = sup
j∈[1,no], e∈Ê(k)

Ije.

It can be further checked that

‖ê(k)‖∞ = δ(k) sup
j∈[1,no], e∈{e:M2e≤N2}

Ije.

Note that the term c1 = supj∈[1,no], e∈{e:M2e≤N2} I
je is

fixed afterK is determined and therefore can be considered
as a constant. Similarly, the term ‖ē(k−1)‖2 +

√
tn‖ê(k−

1)‖∞ is also a constant since it is fixed when cycle k −
1 is finished. Denote it as c2. The inequality in (22) is
equivalent to

‖ep(k)‖2 + δ(k)c1 ≤ c2.
which is a quadratic constraint. Since the objective func-
tion of Problem 1 is a quadratic function and the con-
straints are either linear or quadratic functions, Problem
1 is a quadratically constrained quadratic programming,
which is convex and therefore can be efficiently solved by
methods such as interior point method (Mehrotra (1992)).

The overall control scheme is shown in Fig. 1. The state
feedback control (dotted block) is executed at each sample
time while the outer loop is conducted once a cycle. Thus,
it is noted that the method enjoys a low computation
complexity.

4. STABILITY ANALYSIS

Similar to many MPC algorithms, feasibility can imply
stability in our problem. Thus, we study the consistent
feasibility of Problem 1 first.

Theorem 1. (Feasibility to constraints): If the constraint
in (21) is satisfied, then satisfaction of (4) is guaranteed.

Proof : The proof is similar as Lemma 2. Since û(t, k) ∈
Û(k) and Kx̄(t, k) + u0(t, k) − u(t, k − 1) ∈ U(k) ∼ Û(k),
we have u(t, k)−u(t, k−1) = û(t, k)+Kx̄(t, k)+u0(t, k)−
u(t, k − 1) ∈ U1 ∼ Û1. Thus, (4) is ensured.

Theorem 2. (Recursive feasibility): If Problem 1 is feasible
in cycle k − 1, then it is also feasible in cycle k.

Proof : Assume Problem 1 is feasible in cycle k − 1.
Then, in cycle k, taking δ(k) = 0, it can be derived
that u0(t, k) = u0(t, k − 1), x̄(t, k) = x̄(t, k − 1) and
e(t + 1, k) = e(t + 1, k − 1) for any t ∈ [0, tn − 1], which
provide a group of feasible solution to the constraint in
(21). Moreover, in view of (13), (14) and (15), the tracking
error satisfies

e(k) = e(k − 1) = ē(k − 1) + ê(k − 1).

According to the triangle inequality, it is further proved
that

‖e(k − 1)‖2 ≤‖ē(k − 1)‖2 + ‖ê(k − 1)‖2 (23)

≤‖ē(k − 1)‖2 +
√
tn‖ê(k − 1)‖∞,

which ensures that the inequality (22) holds. By explicitly
giving a group of feasible solution to Problem 1 in cycle k,
its feasibility is proved.

Next, we can prove the boundedness of tracking error
based on its feasibility.

Theorem 3. (Bounded tracking error): By applying the
control law in (9), the tracking error ‖e(k)‖2 is bounded
in each cycle.

Proof : This property is guaranteed by the inequality (22).
According to (23), ‖ē(k)‖2 +

√
tn‖ê(k)‖∞ is an upper

bound of ‖e(k)‖2. The constraint in (23) guarantees that
the upper bound of each cycle is non-increasing. Thus,
‖e(k)‖2 for each cycle is bounded.

Remark 2. According to Theorem 3, the controller guar-
antees the decrease of an upper bound of the tracking
error, instead of the tracking error itself. If a monotonic
decrease on tracking error is desired, (23) can be replaced
by ‖ē(k)‖2+

√
tn‖ê(k)‖∞ ≤ ‖e(k−1)‖2. However, this con-

straint brings conservativeness, which means the variable
δ(k) may quickly go to 0. In this case, control performance
can hardly get improved even though monotonic decrease
of tracking error is guaranteed. Problem 1 uses (23) to
guarantee the robust stability and optimize the tracking
performance based on the nominal system. Shown by Xu
et al. (2012), this approach can help to avoid conservative-
ness.

5. SIMULATIONS

In this section, control of injection velocity in an injection
molding process, which is an important polymer processing
technique, is taken as an example. In velocity control,
ram velocity is controlled by hydraulic pressure. The
mechanism model is given in Cao et al. (2015) as

Ṗh =βh/Vh(qh −Ahvz),
v̇z =1/M(PhAh − PnAn − fv),
Ṗn =βp/Vn(Anvz − qp).

Here Ph denotes hydraulic pressure. Pn denotes nozzle
pressure. Vh and Vn are volumes in cylinder and nozzle
respectively.Ah andAn are cross-section areas of hydraulic
system and nozzle. fv is the friction force. qh is hydraulic
flow rate and qp is polymer melt flow rate. βh and βp
are hydraulic oil and polymer melt bulk modulus. M is
ram mass. In Cao et al. (2015), it was shown that βh/Vh
and βp/Vn can be treated as constants. Under the air shot
operation, Pn is also a constant. Thus, the map between
qh and vz is linear by taking PnAn and fv as exogenous
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disturbances. This has been verified by experiments (Yang
(2004)) and the following state space model is used in this
work.

x(t+ 1, k) =

[
1.6 −0.5916
1 0

]
x(t, k) +

[
1
0

]
u(t, k) + n(t, k),

y(t, k) = [ 1.69 1.419 ]x(t, k).

In this simulation, the nonlinear term n(k) is set as

n(t, k) =
[

0.2
√
u(t, k)2 + 1

T
0.2|u(t, k)|T

]T
.

The reference to be tracked is set as

yr(t) =

{
15, t ∈ [1, 20]
30, t ∈ [21, 50].

The eigenvalue of linear part is 1.02 and 0.58, which
shows the system unstable. A state feedback gain K =
[−1.6 0.5916 ] is selected to stabilize the system, based on

which, the set Û and U− Û can be computed. Then, take
Qw = diag(1, 1) and Rw = diag(0.01, 0.01). System inputs
for each cycle can be derived by Problem 1.

For comparison, the method in Shi et al. (2006) is im-
plemented. This robust control strategy was designed
by solving linear matrix inequalities induced by a two-
dimensional Lyapunov function. Parameters are taken as
ε = 0.1, γ = 2.5, ρk = 0.1 and ρt = 0.1. To compare
the cycle-wise convergent rate, the method in Shi et al.
(2006) is also adopted to control the first cycle when the
proposed method is simulated such that the outputs of the
two methods are the same in cycle 1.

Fig. 2 and Fig. 3 gives the outputs in cycle 1, 5 and 10 of
the two methods, showing that the proposed method has a
superior performance with less oscillations. This is further
verified by Fig. 4 in which the mean square tracking errors
(MSE) of the two methods are plotted. The MSE of the
proposed method is significantly reduced by the proposed
method.
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Fig. 2. Proposed method: Outputs of cycle 1, 5 and 10.

6. CONCLUSIONS

In this paper, a tube feedback iterative learning control
strategy is designed for batch processes with unknown
nonlinearity. Intrinsically, the control input is composed
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Fig. 3. The method in Shi et al. (2006): Outputs of cycle
1, 5 and 10
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Fig. 4. Comparison on mean square error of the proposed
method and Shi’s method in Shi et al. (2006)

of a feedforward term and a feedback term. The feedfor-
ward term, derived by optimal iterative learning control,
improves the tracking performance. The feedback term,
induced by a state feedback controller, stabilizes the entire
system and regulates the states within a tube around the
trajectory determined by the OILC. In this way, constraint
fulfillment and cycle-wise tracking error decrease are en-
sured simultaneously. In sum, the proposed method has
low online computation complexity and wide applications
covering both stable and unstable systems.
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