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Abstract: Steam Assisted Gravity Drainage (SAGD) is an efficient and widely used technology
to extract heavy oil from a reservoir. The accurate prediction of subcool plays a critical role in
determining the economic performance of SAGD operations since it influences oil production and
operational safety. This work focuses on developing a subcool model based on industrial datasets
using deep learning and several other widely-used machine learning methods. Furthermore,
this work compares and discusses the out-of-sample performance of different machine learning
algorithms using industrial datasets. In addition, we also show that care has to be taken when
using machine learning algorithms to solve engineering problems. Data quality and a priori
process knowledge play a role in their performance.
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1. INTRODUCTION

Steam Assisted Gravity Drainage (SAGD) is an efficient,
in situ, enhanced oil recovery technique to produce heavy
crude oil and bitumen from reservoirs (Butler et al., 1998).
The SAGD operation involves a well pair consisting of two
wells: an injection well, and a production well. The high-
temperature steam, generated from the steam generation
system, is injected into the reservoir through the injection
well which heats up and reduces the viscosity of the heavy
bitumen in the reservoir, and forms the steam chamber
underground. The heated bitumen and condensed liquid
then flow towards the production well due to gravity.
The bitumen collected in the producer is then pumped
to the surface for further processing (Butler et al., 1998;
Vander Valk et al., 2007).

One of the most important variables in SAGD operations
is subcool, which is the temperature difference between
steam at the injector and fluid at the producer (Van-
der Valk et al., 2007). It is a key parameter which reflects
the liquid level at the producer and has a significant im-
pact on SAGD reservoir performance (Vander Valk et al.,
2007). Yuan et al. (2013) studied the relationship between
subcool, wellbore drawdown, fluid productivity and liquid
level. Moreover, a model for the SAGD liquid pool above
the production well was studied using heat balance and
mass balance equations (Gotawala et al., 2012).

Ito et al. (1999) conducted a study on reservoir dynamics
and subcool optimization for steam trap control. Gotawala
et al. (2009) proposed a subcool control method with smart
injection wells. In their study, they divided the SAGD
injector into several intervals, and controlled subcool by
changing the steam pressure at each interval. In addition,
the study on the optimization of subcool in SAGD bitumen
process has been carried out (Stone and Bailey, 2014).
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Furthermore, the Model Predictive Control technique has
been used to stabilize subcool temperature and automate
well operations in SAGD industry (Patel et al., 2014).

Subcool not only influences reservoir and oil production
performance but also has a significant effect on opera-
tional safety, since it can reflect the liquid level of the
producer. An inappropriate liquid level can result in steam
breakthrough thus damaging equipment. Therefore, pre-
dicting the subcool value is necessary, and it is beneficial
in monitoring, control, and optimization of the process,
since the prediction model of the subcool can provide
useful information to process and operations engineers.
Since subcool is a temperature difference, several factors
which have an effect on the temperature at injector and
producer will influence the subcool. For example, pump
frequency will influence the liquid level trapped at the
bottom of the producer, therefore, it has an effect on the
temperature at the producer. Also, the heterogeneity of
the reservoir properties hinders us from developing a first
principle model of subcool. Researchers, therefore, often
resort to developing data-driven models in this work.

This paper is organized as follows. First, the general SAGD
process, subcool and problem description are introduced.
Second, a brief description of deep learning and other
selected machine learning methods are introduced. Third,
the subcool model development and corresponding hy-
per parameter settings are discussed. Furthermore, model
performances using industrial datasets are analysed, and
finally, conclusions are presented.

2. PROBLEM DESCRIPTION

SAGD technology has been used extensively in the oil
sands industry in recent decades, and a large volume of
historical industrial datasets are available. With the ad-
vent of novel machine learning methods and data analytics,
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these historical process data can be efficiently used to
improve the process performance. The stored data contains
a wide variety of information such as seismic images of the
steam chamber which are of image types and conventional
process variables that are stored as floating point variables.
Further, the enhancement in the instrumentation of the
operations has increased the speed at which the data is
stored. In addition, the data includes a lot of inconsistent
measurement and missing values, which can be caused by
the hardware sensor faults. It also has noisy measurement
due to the hardware sensors and varying environment.
Data in SAGD process also contains a lot of useful infor-
mation that can be used efficiently to improve the process
operation and increase profitability.

In this study, we aim to solve a problem of estimating
an underground state variable, subcool, using some of the
manipulated variables as inputs. Figure 1 presents the
schematic of SAGD operation. The injected steam plays
a significant role in subcool, and the liquids produced are
lifted up by the pump. Therefore, the input variables used
are those related to injector flowrate, injector pressure, and
pump frequency. In this study, we will build a prediction
model of subcool as follows:

Y = f(X1, X2, ..., Xp) (1)

where Y denotes subcool at a certain location and X1,
X2, ..., Xp denote selected input variables. As described,
we have only selected manipulated variables as influential
features for the subcool prediction. The developed data-
driven model is beneficial when underground hardware
sensor measurement is unavailable or unreliable, and can
be utilized as an alternative subcool measurement.

Fig. 1. Schematic of a SAGD process

3. REVISITING MACHINE LEARNING METHODS

Machine learning includes a wide range of algorithms, such
as supervised learning, unsupervised learning, reinforce-
ment learning, transfer learning, etc. In order to deal with
the problem described in Section 2, we resort to advanced
data-driven modelling techniques, such as Deep Learning,
ensemble tree-based methods, kernel methods and linear
methods. We introduce them briefly in this section.

3.1 Deep Learning

Deep Learning includes a wide range of algorithms, such as
Deep Neural Networks, Auto Encoders, Restricted Boltz-
mann Machines, Deep Belief Networks, etc (Goodfellow
et al., 2016). There are many Deep Neural Networks types,
such as Convolutional Neural Network (CNN) and Long
Short Term Memory (LSTM), which have profound appli-
cations in Image Processing and Natural Language Pro-
cessing, respectively (LeCun et al., 2015). In this study, we

consider Deep feedforward neural networks. “Deep feedfor-
ward networks, also called feedforward neural networks, or
multilayer perceptrons (MLPs), are the quintessential deep
learning models” (Goodfellow et al., 2016).

We next introduce some key aspects of deep feedforward
network which are crucial to its performance. One of the
important factors is weight initialization. There are several
methods to do the initialization, via randomly sampling
from a uniform or normal distribution over an interval or
generating a random orthogonal matrix (Saxe et al., 2013;
Bottou, 2012; Glorot and Bengio, 2010).

Another important factor that affects the performance
of a deep learning model is the choice of the activation
function. Sigmoid and hyperbolic tangent function were
the popular choices of activation function in the past,
and Rectified Linear Unit (ReLU) has become popular
recently (LeCun et al., 2015). The mathematical form of
ReLU, which is proved to improve Restricted Boltzmann
Machines, can be expressed as follows (Nair and Hinton,
2010):

f(x) = max(0, x) (2)

Other types of activation function are introduced in
(Goodfellow et al., 2016).

Another important component in Deep Learning is the
optimization algorithm. The widely used algorithms are
mini-batch Stochastic gradient descent and its multiple
variants (Bottou, 2010; Duchi et al., 2011). In this work,
we will use Adam (Kingma and Ba, 2014). For detailed
introduction to deep learning, the reader is referred to the
works of (Goodfellow et al., 2016; LeCun et al., 2015).

3.2 Gradient Boosted Decision Trees

Gradient Boosted Decision Trees (GBDT) is one of the
most widely used machine learning algorithms today. It
iteratively develops an additive regression model sequen-
tially. At each iteration, it assumes that the model is
imperfect and constructs a new model to be added to the
existing model (Freund et al., 1999; Friedman et al., 2001).
Gradient Boosting constructs weak predictors by fitting a
gradient at each iteration. This gradient is that of the loss
function to be minimized with respect to the model values
(Friedman, 2001, 2002).

The gradient tree boosting algorithm is briefly introduced
as follows (Friedman et al., 2001): It starts with building
a constant regression model. To illustrate this, assume
we build M trees, so there are M outer loop iterations.
In each iteration, the gradient of the loss function with
respect to the function values at each training data point is
calculated, and a regression tree is fitted between training
data points and residuals. Then, the current predictor
is updated. After M iterations, the final predictor is
constructed.

3.3 Random Forest

Random Forest was proposed by Breiman (Breiman,
2001). As in Bagging, it trains each tree on a sampled
bootstrap dataset from the training data. However, it con-
siders a random subset of the variables to split an internal
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node, rather than all the variables. Each tree of Random
Forest is a decision tree, and for a regression problem, the
average value is applied as the prediction.

The training process of Random Forest can be summarized
as follows (Breiman, 2001):

1. Draw M bootstrap datasets from the training dataset.

2. Grow a decision tree for each bootstrap dataset. A
randomly selected q features are considered to split an
internal node. The tree is grown until the maximum depth.

3. Aggregate M predictions of the new data point to
compute the final single prediction. The majority vote
and the average value are applied for classification and
regression as final prediction, respectively.

Note that some important properties of Random Forest,
such as, Out-of-Bag (OOB) error, Variable Importance,
and Intrinsic Proximity Measure (Breiman, 2001) are not
discussed here in the interest of brevity.

3.4 Support Vector Regression

Cortes and Vapnik at AT&T Labs proposed Support
Vector Network as a learning machine (Cortes and Vapnik,
1995). The main idea here is to do feature expansion:
First, inputs are mapped to a high dimensional space
non-linearly; then, a linear surface is built in the new
space. The solution of SVM is sparse, and only a subset
of training data points are utilized to form the solution
(Friedman et al., 2001).

In order to map the inputs from the original space to a
high dimensional space, a kernel function is used. Also,
Support Vector Regression applies an ε-insensitive loss
function, which is proposed by Vapnik, and the optimiza-
tion algorithm aims at minimizing the error bound, rather
than the observed training errors (Cortes and Vapnik,
1995; Friedman et al., 2001; Smola and Schölkopf, 2004).
Equation 3 shows its form (Cortes and Vapnik, 1995):

Lε(y, f(x)) =

{
0 if |y − f(x)| ≤ ε
|y − f(x)| otherwise

. (3)

3.5 Linear Regression and Ridge Regression

Linear Regression is the simplest regression model. Ridge
Regression is a variant of linear regression, considering
shrinkage of the coefficients (Friedman et al., 2001). By
adding an l2 norm penalty to the loss function of linear
regression, we obtain the loss function of Ridge Regression.

4. MODEL DEVELOPMENT

In this section, we focus on developing data-driven models
using deep learning and other machine learning methods.
Description of dataset, data pre-processing, hyperparam-
eter exploration, settings and software are discussed.

4.1 Data Description

In this study, we use an industrial dataset to develop and
investigate the performance of different predictive models
for subcool prediction. The dataset contains 5 inputs

variables, which we use as influential input variables, to
predict an output variable. See Table 1.

Table 1. Process variables description

Variables Description Units

Output Reservoir Subcool °C
Input 1 Injector tubing pressure kPa

Input 2 Injector casing pressure kPa

Input 3 Injector tubing flowrate sm3/hr

Input 4 Injector casing flowrate sm3/hr

Input 5 Pump frequency Hz

The dataset contains 25,000 samples of measured data
after data cleaning as described in Section 4.2. These
measurements are taken over a time period of nine months.
The data is divided chronologically for training and test-
ing purposes. The first 20,000 are considered as training
dataset and for tuning hyperparameters. The next 5000
samples are used for testing the out-of-sample performance
of the developed predictive models. The sampling time is
10 mins and the sample value is the average value of this
interval. It is considered to have achieved the steady state,
thus, we build static models.

4.2 Data Pre-processing

The raw industrial dataset collected from the historical
database might include inconsistency, missing values, and
outliers. Therefore, they cannot be used directly in the
model development. Hence, data pre-processing is per-
formed prior to model development. Data cleaning involves
removing inconsistent measurement, missing values, and
outliers. Then, we normalize the data for scaling issues,
and also, for the convergence and better performance of
machine learning algorithms.

4.3 Hyperparameter exploration

The goal of this subsection is to explore hyperparameter
settings for each of the algorithms under investigation.
For this purpose, only the first 20,000 data points are
used. Test data are not used in this subsection. The first
20,000 data points are divided chronologically into training
and validation datasets. In this study, we evaluate the
following statistics: Mean Absolute Error (MAE), Mean
Square Error (MSE), Pearson correlation coefficient, and
the trend of plots to compare the performance of different
hyperparameter settings of each model on the validation
set. We applied Grid Search, Random Search, and Greedy
Search as hyperparameter search strategies. Once the
hyperparameter settings are determined, we train the
model again on all of the 20,000 data points to obtain
the final model. This model will be used later to analyze
the performance on test data.

The model developments and evaluations are performed
in Python 2.7, in Mac OS X 10.11.5 environment. Deep
Learning model is developed via Keras 2.0.6 (Chollet et al.,
2015), using TensorFlow 1.0.0 as its backend, which is
developed by Google (Abadi et al., 2016). Other machine
learning methods investigated in this study, such as Ran-
dom Forest, Gradient Boosted Decision Trees, Support
Vector Regression, Ridge Regression and Multiple Linear
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Regression are performed via scikit-learn version 0.18.1
(Pedregosa et al., 2011; Buitinck et al., 2013). Next, we
present the hyperparameter settings of different models.

Deep Learning As mentioned previously, we choose
Deep Feed Forward Neural Networks in Deep Learning.
One of the core ideas of deep learning is to have deeper
architectures (Bengio et al., 2009). Therefore, we tried
multiple layers on training dataset, and finally selected
4 hidden layers. Dropout is a way to avoid overfitting
(Srivastava et al., 2014). Our hidden layer is not wide, and
we do not apply dropout in this case. We apply l2 norm
for regularization and avoid overfitting. An epoch means
a complete pass through the whole training dataset while
training the model (Goodfellow et al., 2016; Chollet et al.,
2015). The network is fully connected.

Gradient Boosted Decision Trees Learning rate
shrinks the contribution of each tree when a tree is added
to the model, and could be considered as a weighting factor
of the additive sequentially learned models (Friedman,
2001; Friedman et al., 2001). Each decision tree has a
maximum tree depth. The deeper a tree grows, the more
complex a model becomes.

Random Forest Minimum number of samples required
to be at a leaf node controls the depth of a regression tree.
While a tree is being trained, a randomly selected number
of features are considered to split an internal node. The
maximum number to consider equals to the square root of
the total number of features in this setting.

Support Vector Regression We choose Radial Basis
Function as the kernel in this case after testing different
kernel choices. Penalty parameter controls the trade-off
between bias and variance.

Ridge Regression Regularization parameter controls the
bias and variance trade-off.

Linear Regression There is no hyperparameter in Linear
Regression.

The hyperparameter settings of different models under
consideration are presented in Table 2.

5. RESULTS AND DISCUSSIONS

In this section, we report prediction performance on test
data. Only normalized data results are shown for data
proprietary reasons.

5.1 Performance on test data

In this subsection, we show the predictive performance of
each model (see Figure 2 and Figure 3), using hyperpa-
rameter settings discussed in Section 4.3. Linear Regres-
sion shows the same trend plot as Ridge Regression. We
only show the plot of Ridge Regression. The performance
statistics of different models such as MAE, MSE, Pearson
correlation coefficient are presented in Table 3.

While developing deep feedforward neural network model
in Keras with TensorFlow as its backend, we should
note that the issue of randomness may lead to non-
reproducible results, which comes from the random initial-
ization weights, shuffling data, mini batch in optimization,

Table 2. Hyperparameter settings

Hyperparameter Value

Deep Learning

Number of hidden layers 4

Number of neurons in each 32, 128, 256, 128
hidden layers

Hidden activation function ReLU

Output layer 1 linear neuron

`2 regularization parameter 1e-4

Optimizer Adam
learning rate: 0.001

Number of epochs 300

GBDT

Number of regression trees 250

Learning rate 0.01

Maximum depth of regression tree 5

Random Forest

Number of regression trees 500

Maximum features to Square root of the
consider in each split number of features

Minimum number of samples 0.01×
required to be at a leaf node number of samples

Support Vector Regression

Kernel function Radial Basis Function

Penalty parameter for the error 0.5
term in loss function

Kernel Parameter 10

ε 0.1

Ridge Regression

Regularization strength parameter 2.5

Table 3. Test results

Methods Test Test Correlation
MAE MSE Coefficient

Deep Learning 0.28615 0.16440 0.78320

GBDT 0.22425 0.10475 0.80857

Random Forest 0.23073 0.11927 0.77248

SVR 0.27219 0.17925 0.65551

Ridge Regression 0.53630 0.38927 0.26273

Linear Regression 0.53633 0.38931 0.26270

and implementation of tools for parallel computing (Chol-
let et al., 2015; Abadi et al., 2016). We train the model
with the same settings and data 10 times, separately. Each
of the 10 models will produce a prediction. For brevity, we
report the results with the best MAE of the 10 deep models
only.

Fig. 2. Test results of Deep Learning/Deep Feedforward
Neural Networks
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5.2 Discussions

First, it is obvious that the non-linear methods have better
performance compared to linear methods due to inherent
nonlinearity of the dataset. Therefore, the model is under-
estimated with linear methods, and a more complex model
is required.

Second, it can be observed that SVR outperforms linear
methods. The kernel trick in SVR doing feature expansion
not only deals with data nonlinearity, but also implies that
there are some hidden features in the process from the 5
input features to subcool because of its better performance
than linear methods. Also, we see a relatively smoother
plot of SVR predictions in Figure 3. It could be explained
by the threshold epsilon, which makes the prediction less
sensitive to smaller noises.

Comparison between the Random Forest and GBDT indi-
cates that GBDT performs better in terms of MAE, MSE
and Pearson correlation coefficient, but both methods
perform well. As introduced earlier, both methods apply
multiple models to estimate the single final prediction.
This is one reason why they both perform well. Moreover,
they are both based on Regression Tree. Prediction is
performed through comparison between the value of the
corresponding feature and the internal nodes. As a result,
the qualitative relationships between subcool and selected
features are influential in this case. In addition, using the
samples of the leaf node for prediction can decrease the
effect of noise which is due to environment, sensors, etc.

Deep learning method does not show the best results in
terms of MAE, MSE and Pearson correlation coefficient.
However, the trend plot of the Deep Learning model can
capture the peak in the trend very well while all other
models more or less failed in capturing the peak. This
is because of the flexibility of deep learning model and
powerful optimization algorithm. First, we apply multiple
layers and the number of neurons in each hidden layer
can be changed. Therefore, the automatic latent feature
expansion and reduction within multiple hidden layers
imply the meaningful results of deep feedforward neural
network. Second, the ReLU activation function does not
suffer from saturation problem, which avoids gradient
decays (Nair and Hinton, 2010). Also, a good model needs
a powerful optimization algorithm to train parameters.

Fig. 3. Test results of GBDT, Random Forest, SVR and
Ridge Regression

The Adam, a stochastic optimization algorithm, has the
advantages of bias correction and individual adaptive
learning rate, which makes it useful in solving non-convex
optimization problem (Kingma and Ba, 2014). Hence,
the flexible architecture, unsaturated activation function
and powerful optimization algorithm explains why deep
leaning can capture the peak.

5.3 Care Taken in Applying Machine Learning Tools

In this section, we show that care has to be taken when
using machine learning tools to solve complex engineering
problems. To this end, another set of data, containing
37,100 data points after data cleaning, is considered. Data
normalization and model hyper parameter settings are
explored again and poor performance has been reported
on the new test data.

Fig. 4. Test results of Deep Learning/Deep Feedforward
Neural Networks using new dataset

Fig. 5. Trend of Injection Tubing Pressure

Only the trend plot of Deep Feedforward Neural Networks
is listed since it has shown the best performance, and
other methods do not perform better than this in terms
of any metrics on this new dataset. Pearsons correlation
coefficient of a deep feedforward neural network in this
new data set is 0.2169 whereas the test MAE and MSE
were found to be 0.474 and 0.316, respectively.

We have investigated the original data to see what hap-
pened in the period of this set of data. We found there were
obvious operation condition changes between the range of
training data and testing data. Because of closed-loop con-
trol and cascade control, the operational condition changes
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can be reflected by several variables. See Figure 5 for
Injection Tubing Pressure, where training data period and
testing data period is split by red dashed line. From this
figure, one can see that much more significant downtrend
oscillations of the injection tubing pressure occurred in the
testing data period than the training data period, which
has invalidated the model learned from the training data.
Therefore, the data quality in engineering applications
plays a critical role in the process data analytics and
deep learning. Blind use of the machine learning tools
can introduce problems. Meanwhile priori knowledge of
the industrial process can also help in dealing with this
type of problems.

6. CONCLUSIONS

Machine learning can make use of complex industrial data
for building data driven models. The potential advantages
of various machine learning methods under consideration
have been discussed in this study. The Deep Feedforward
Neural Network has shown good predictive performance in
capturing process trends. Also, the performance of ensem-
ble decision tree based regression models are comparable.
Further, the model development task highlights the neces-
sity of assessing data quality prior to model building.
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