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Abstract: A robust adaptive controller is developed for a chemical process using a generalized Polynomial 

Chaos (gPC) expansion-based Markov decision model, which can account for time-invariant probabilistic 

uncertainty and overcome computational challenge for building Markov models. To calculate the transition 

probability, a gPC model is used to iteratively predict probability density functions (PDFs) of system’s 

states including controlled and manipulated variables. For controller tuning, these PDFs and controller 

parameters are discretized to a finite number of discrete states for building a Markov model. The key idea 

is to predict the transition probability of controlled and manipulated variables over a finite future control 

horizon, which can be further used to calculate an optimal sequence of control actions. This approach can 

be used to optimally tune a controller for set point tracking within a finite future control horizon. The 

proposed method is illustrated by a continuous stirred tank reactor (CSTR) system with stochastic 

perturbations in the inlet concentration. The efficiency of the proposed algorithm is quantified in terms of 

control performance and transient decay. 
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1. INTRODUCTION 

Adaptive control provides a systematic approach for automatic 

adjustment of controller parameters to maintain a desired level 

of control system performance. The basic idea is to recursively 

identify a best model of the process from the closed loop input-

output data and to subsequently adjust controller parameters 

based on the identified model and an adaptation law. However, 

the model cannot be always identified with certainty, since 

noisy data are used for model calibration and the process can 

change unpredictably in time, e.g., unmeasured disturbance. 

This can result in uncertainty in the process model that may 

deteriorate the control performance. 

Markov decision models based control is one of the recently 

reported approaches for adapative control in the presence of 

uncertainty (Ikonen, et al., 2016). The controller tuning with 

Markov model can concern the closed loop performance and 

account for uncertainty in various system components. The 

basic idea of Markov models based control is that, using the 

first principle models of a process, the state variables, e.g., 

controlled and manipulated variables, are discretized into a 

finite set of discrete states within their effective dynamic 

ranges, and the evolution between states is described with  

transition probabilities (Negenborn, et al., 2005). Based on this 

predicted evolution in time, a control action can be calculated 

from an optimization problem defined over a finite future 

control horizon as done in model predictive control algorithms. 

Such Markov models based strategy can be used for predicting 

the outputs in nonlinear dynamic problems in the presence of 

uncertainty. However, this technique is difficult for real-time 

implementation, since the formulation of transition probability 

between states requires numerous simulations, thus it may be 

computationally prohibitive (Lee & Lee, 2004). 

This paper addresses these computational limitations by the 

use of the generalized Polynomial Chaos (gPC) expansions. 

The idea is to develop a robust adaptive control algorithm, 

using a Markov decision model and uncertainty quantification 

techniques. Our objective is to build a basic framework to 

integrate the Markov model with uncertainty quantification for 

nonlinear process control, when only an inaccurate process 

model is available. The key in this work is to approximate the 

probability density function (PDF) of uncertainty in a process 

and propagate it onto manipulated and controlled variables. 

The PDFs to be calculated online by using gPC models can be 

discretized into a finite number of discrete states in a Markov 

model. Based on this discretization results, the transition 

probability between states can be readily calculated from the 

PDFs, thus eliminating the need for numerous simulations. 

Finally, using the transition probability, an optimization that 

minimizes a sequence of cost in the future control horizon can 

be defined for online controller tuning. Moreover, since a 

Markov model is used, the optimization can be converted into 

an iterative dynamic programming problem to avoid excessive 

simulation runs within the optimization search. 

Since our objective is to adjust control parameters online, it is 

crucial to propagate uncertainty onto measured quantities in a 

computationally efficient manner and then build a Markov 
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model in real-time. Although sampling-based methods such as 

Monte Carlo (MC) simulations could be used, they are time 

prohibitive for online implementation. Thus, the generalized 

polynomial chaos (gPC) expansion (Xiu, 2009) is used. The 

advantage of the gPC is that it can efficiently propagate the 

probabilistic uncertainty onto the predictions of measured 

quantities and quickly approximate their corresponding PDFs 

(Du, et al., 2017), which can be discretized to calculate the 

transition probability used for controller tuning. The rapid 

calculation of the transition probability is the key element in 

the proposed approach, since it is the main challenge to apply 

Markov models for control. 

This paper is organized as follows. Section 2 presents the 

principal techniques used in this work.The proposed adaptive 

control strategy is presented in Section 3. The control strategy 

is illustrated for an endothermic continuous stirred tank reactor 

(CSTR) in Section 4. Analysis and discussion of the results are 

given in Section 5 followed by conclusions in Section 6. 

2. THEORETICAL BACKGROUND AND PROBLEM 

FORMULATION 

2.1  Process models 

Markov models based control typically requires first principle 

models. Let assume a nonlinear system can be defined as: 

ẋ = f (t, x, u; g) + v1(t) (1) 

y = h (t, x) + v2(t) (2) 

, where f and h are nonlinear functions and 0 ≤ t ≤ tf. x∈Rn 

contains the system states (including controlled variables) with 

initial conditions x(0) = x0 over time domain [0, tf], u denotes 

the manipulated variable, y is the process outputs, v1 and v2 are 

random vectors respresenting noise, and g∈Rng is an unknown 

time varying input vector representing the uncertainty in the 

process. Such an uncertainty is common in chemical processes 

generally due to materials variablity or imperfect control. The 

control objective is to find an optimal tuning parameters such 

that controlled variables can optimally track their set points 

over a finite future horizon. For instance, a PID controller can 

be used as follows: 

u = us+ Kpe + (Kp/ τi) ∫ e
  t

0
dt' + Kpτd  

de

dt
  (3) 

, where e is the error, i.e., the difference between set point and 

measurement of controlled variable, Kp, τi and τd are controller 

parameters, solved with an adjusting criterion. Although, for 

simplicity, we have only considered PID controllers in this 

work, the proposed method can be similarly extended to a state 

feedback controller, such as certain model predictive control 

(MPC) formulations (Kothare, et al., 1996; Wan & Kothare, 

2002), where the gain matrix elements will be self-tuned. 

2.2  Markov decision models 

Markov decision models are applicable in processes involving 

uncertain state transitions and can enable sequential decision 

making. A first order Markov model is used in this work, for 

which the future states only depend on the current states. 

Additionally, it is assumed that dynamic ranges of measured 

quantities, i.e., x and u, can be approximated with a finite sets 

of values. For example, the state variables x can be discretized 

into S disjoint regions {χi}, i.e., χ=⋃ χi
S
i=1  and χ

i
⋂ χ

j
=ϕ, where 

i, j=1, 2, …S, and each region represents a state. Details about 

this discretization step will be discussed in Section 3. In this 

way, the continuous variables such as x in (1) can be described 

with discrete transitions {χi}. Since uncertainty such as time 

vaying input g and measurement noise are considered in this 

work, the evolution between χi and χj is stochastic, i.e., a state 

χi can evolve to χj in some time intervals, while at other time 

intervals χi may evolve to χj’ rather than χj. This is conveniently 

described by a transition matrix P={pi, j}, i.e., a (S×S) matrix, 

where pi, j is the probability that χi can evolve to χj. The process 

outputs y can be discretized in a similar way. 

Since the transitions occur under closed loop control, the 

evoltuion is dependent on the controller parameters such as Kp, 

τi and τd in (3). For control implementation, it is necessary to 

discretize the space defined by a controller. The discretization 

is relative to state variables x, and a set of states of controller 

parameters can be defined, i.e., ca∈C={c1, c2, …,cnA
}, a=1, 2, 

…nA. The discretization of controller parameters is analogous 

to generating a look-up table, which provides all the possible 

control actions. Subsequently, nA transition matrices can be 

defined, i.e., Pa={p
i, j
a }, and each matrix provides the transition 

probability between states at two consecutive time intervals for 

a particular controller setting ca. 

Using the discretization result, an equivalent Markov model of 

a continuous process in (1) is defined as: 

q(k+1) = q(k) P ca(k) (4) 

, where k is a discrete time instant, P ca(k) is the transition matrix 

for a particular set of controller parameter ca at k, and q(k) and 

q(k+1) are the probability that a process occupies a set of states 

{χi} at two consecutive time instants k and k+1, respectively. 

The next step is to formulate the probability transition matrix. 

Based on first principle models, the probability is often built 

by counting the number of observed state pairs ({χi}, ca) that 

lead to a particular state χj, and by normalizing the count with 

respect to the total number of transitions in each pair as below: 

p
i, j
a = 

# (χj |{χi}, ca) 

# ∑ ({χi}, ca) 
= 

# ({χj(k+1)}|{χi(k)}, ca(k)) 

# ∑ ({χi(k)}, ca(k)) 
 (5) 

, where # indicates the number of active states or the number 

of active transitions. Note that active here means transitions 

with a nonzero probability. 

The computational time to construct the probability transition 

matrix is a main challenge for Markov model-based control, 

and the accuracy of transition probability is related to process 

models. For example, the total number of simulations is 

(S*nA*m), when m samples are used in each state in order to 

calculate a transition probability, since there are S dicrete 

states of x and nA possible control actions in total. Also, the 

transition matrix may have to be repeatedly calibrated in the 

presence of uncertainty arising from unpredictable changes, 

which can complicate the calculations. To accelerate the online 

calculations, a gPC model is used in this work. 
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2.3  Generalized polynomial chaos (gPC) expansion 

A gPC expansion estimates a random variable as a function of 

another random variable (e.g., ξ) with a prior known PDF (Xiu, 

2009). To preserve orthogonality, the basis functions of gPC 

are selected according to the choice of the distribution of ξ. For 

a process given in (1), each element gi (i=1,2,…,ng) of the 

uncertain input g can be approximated with a gPC model as: 

gi = gi(ξi) (6) 

, where ξi is the ith random variable. The random variables ξ= 

{ξi} are independent and of equal distributions. Note that ξi is 

assumed to follow a standard distribution here, but elements in 

{gi} practically can follow any distributions by including a 

sufficient number of basis functions in the gPC expansion. 

Using gPC, the uncertainties represented by g, system states x 

and manipulated variable u can be approximated in terms of 

polynomial orthogonal basis functions Φk(ξ) as: 

g
i
(ξ)= ∑ g

i,k
Φk(ξ)∞

k=0   (7) 

xj(ξ)= ∑ xj,k(t)Φ
k
(ξ)∞

k=0   (8) 

uj(ξ)= ∑ uj,k(t)Φ
k
(ξ)∞

k=0   (9) 

, where{g
j,k

}, {xj,k} and {uj,k} are the gPC coefficients of the 

jth uncertainty, the jth states x, and the jth manipulated variable, 

respectively. Also, {Φk(ξ)} are multi-dimensional orthogonal 

polynomial basis functions. Uncertainty {g
i
} are assumed to be 

known approximately, but not accurately. In practice, (7)~(9) 

are often truncated into a finite number of terms. Note that gPC 

coefficients {g
j,k

} in (7) can be estimated with prior knowledge 

of uncertainty. Using {g
j,k

}, gPC coefficients {xj,k} and {uj,k} 

can be calculated by substituting (8) and (9) into (1) and by 

using a Galerkin projection with respect to each basis function 

{Φk(ξ)}. For breivty, the steps for the calcualtion of the gPC 

coefficients is not given, but the details can be found in (Du, 

et al., 2017; Xiu, 2009; Du, et al., 2016). Once the coefficients 

of x and u are calculated, their PDFs can be rapidly estimated 

by sampling from distributions of ξ given in (8) and (9). The 

ability to quickly estimate the PDFs is the key to accelerate 

computations of the transition matrix in this work. 

3. SELF-TUNING CONTROL DESIGN 

The controller parameters is adjusted by a tuning algorithm 

using a gPC-based finite Markov state model and a dynamic 

programming in this work. A Proportional-Integral-Derivative 

(PID) is used for algorithm illustration, since it is one of the 

most commonly used controller in industry. 

3.1  Markov modelling using gPC approximation 

Since the process model used in this work is assumed to be an 

inaccurate approximation and includes uncertainty such as g in 

(1), the gPC is used to estimate ranges of the dynamic variables 

and the transition matrix of x. The main feature is to propagate 

unceratinty in (1) onto measured quantities to build a Markov 

model without using excessive computation. To implement the 

algorithm, the PDFs of g are approximated with gPC, but the 

premise is that the exact statistics of the PDFs are unknown, 

i.e., the gPC coefficients {g
j,k

} in (7) may not be accurate. For 

uncertainty propagation, the gPC coefficients of x are solved 

using Galerkin projection, from which the PDF profiles of x 

are estimated by sampling from the distribution of the random 

variables ξ and by substituting these samples into (8). Fig. 1 

shows a PDF profile of a measured quantity for illustration. 

 

Fig. 1. Markov transition modelling 

The next step for building a Markov model is to discretize the 

state space defined by x in (1). It is assumed that the discrete 

states in a Markov model can be characterized into S disjoint 

regions {χi}, i.e., χ=⋃ χi
S
i=1  and χ

i
⋂ χ

j
=ϕ, where i, j=1, 2, …S. 

Each region is estimated with a reference centroid xi

ref
, which 

represents a state and results in S reference centroids as shown 

in Fig. 1. To assign each sample in the PDFs to a centroid, a 

state index is defined with respect to a mapping (x→i) as: 

i = arg min
i ∈ S

 ‖x - xv
ref

‖ (10) 

, where xv
ref

 is a reference centroid vector, ‖∙‖ represents the 

Euclidean distance, and i is a state in a Markov model with a 

minimum distance between measurements and all reference 

centroids. For instance, for a given measurement (the blue 

triangle in Fig. 1), the smallest distance can be found with the 

first centroid x1

ref
, thus implying that this measurement can be 

represented as state 1 in the Markov model. Due to uncertainty 

arising from model error and measurement noise, the dynamic 

ranges of measured quantities x in (1) have to be extended to 

account for all possible measurements. 

Using the discretization results, the next step is to build the 

probability transition matrix in (5). For each sample in the 

approximated PDF of x, a corresponding state index can be 

found using (10). For example, Fig. 1 indicates that 3 samples 

are found to be in the ith reference centroid, and the probability 

for that state to occur is determined by normalizing 3 with 

respect to the total number of samples used to approximate the 

PDF profile. Note that the ability to calculate gPC coefficients 

and approximate the PDFs at each time instant are the main 

rationale for using the gPC, since it can significantly reduce 

the computational time required for building the transition 

matrix rather than using numerous simulations to calculate 

transition probabilities. To calculate the gPC coefficients of x 

over a finite future control horizon, the states at the current 

time interval are assumed to be measured and used as an initial 

value for the gPC model, otherwise an observer is required. 

For control implementation, the space defined by the controller 

tuning parameters is discretized into discrete states indexed by 

ca∈C= {c1, c2, …, cnA
} using a reference vector cA

ref
, where a=1, 

Reference centroids of a measured quantity (xi) 

P
ro

b
ab

il
it

y
 

centroids 
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2, …nA. These states define a look-up control table. Using the 

Markov model and the control table, the control problem is 

formulated with an objective of finding a set of appropriate 

controller parameters from the look-up table to optimize a 

tuning criterion, which is discussed below. 

In this work, it is assumed for simplicity that the space domain 

defined by the controller parameters is finite and exact. To 

ensure stability of controller, the nonlinear model in (1) can be 

linearized and used off-line to obtain stability constraints for 

the controller parameters that result in negative eigenvalues. 

3.2  Dynamic programming 

Using the gPC-based Markov model, the goal is to find an 

optimal set of controller parameters from the look-up table 

given by ca∈C= {c1, c2, …,cnA
} for minimizing an immediate 

cost over a finite future control horizon as: 

min
ci

  𝐽(x0)  = ∑ μ
k

'r(x(k+k
′
), u(k+k

′
))

k
′=1,⋯,K

 (11) 

, where ci∈C is a vector of decision variables, i.e., controller 

parameters, and x(0) is the initial conditions at current time k, 

i.e., measured quantities. r(x(k+k
′
), u(k+k

′) is a loss function 

that is defined in detail in the following section. The indexes 

k
′
 in the summation cover the measured quantities in the future 

control horizon, i.e., 1≤k
′
≤K. The control tuning is similar to 

model predictive control, but the tuning criterion is based on 

closed loop information. The weights {μ
k

'} in (11) penalize the 

contribution of the cost resulting from each future control 

horizon k
′
. The loss function r decides the trade-off between 

different control objectives, e.g., a larger probability to reach 

the set point in a short period of time versus the probability of 

aggressive movements of the manipulated variables. 

Due to the transition between states in a Markov model, the 

cost at a particular index k
′
 is the summation of the immediate 

cost r at k
′
+1 and the resulting costs at each future control 

horizon after k
′
+1, i.e., from k

′
+2 to k

′
+K. This yields an 

optimization that can be defined recursively by the Bellman 

equation as follows: 

min
ci

  𝐽*(x0)  = min
ci

 {r
k

'
=1

(x0, u) +μ𝐽*(γ(x0
' ,u'))} (12) 

, where μ is an optimization weight for a future control horizon, 

and γ is the loss conditioned on state (x0
' , u'), i.e., k

′
+1, which 

has the same tuning mechanism as defined in r explained in 

next section. The conversion of (12) leads to an iterative 

dynamic programming problem. 

3.3  Adaptive predictive control 

Based on the optimization problem (12), it is straightforward 

to build an adaptive control tuning algorithm. The cost defined 

in (12) is minimized in a closed loop system with a fixed 

control horizon, i.e., 0≤k
′
≤K. The optimization can start in 

both backward and forward manners. For instance, we can start 

from the last control horizon interval K and calculate the loss 

r. Then, we can step backward to control horizon K-1, and 

calculate the corresponding loss. The cost of future horizons 

for a state and control action pair is now the summation of the 

immediate loss r(x(k+K-1), u(k+K-1) and the loss from its 

successor state K. Since the measured quantities x and control 

actions only include a finites number of states, the 

optimization in (12) will converge to a minimum 𝐽*. 

Since Markov models can provide probabilistic information at 

each state, the loss function r in (12) can be defined using the 

transition probability. In addition, r is also dependent on both 

weighted controlled and manipulated variables as follows: 

𝑟(x, u) = α{(1-p
set
a )(xset-xmax

ref
)
2

}+β{(1-p
us

a )(us-umax
ref

)
2

} (13) 

, where α and β are weights, p
set
a  is the transition probability of 

a particular state (reference centroid) that contains the set point 

of the controlled variable conditioned on a control action ca, 

xset is the set point of controlled variable. For the manipulated 

variable, p
us

a  is the transition probability of a specific state that 

contains the nominal value us where the latter may be chosen 

as the steady state value of u corresponding to the chosen xset. 

Further, xmax
ref

 and umax
ref

 represent a state that have the maximum 

probability for each future discrete control horizon k,. By 

minimizing the cost, the tuning of controller is to find a set of 

controller parameters that can realize the set point tracking in 

a finite time, while maximizing the transition probability. Note 

that the cost in (13) will not converge to zero in the presence 

of a persistent disturbance since us will not be the true steady 

state value corresponding to xset. However, the offset will still 

converge to zero due to the use of a controller with integral 

action, i.e. a PI in the current study. 

4. CASE STUDY 

The adaptive tuning strategy is applied to an endothermic 

continuous stirred tank reactor (CSTR) system (Du, et al., 

2016) with a PI controller, which can be described as: 

Vr𝐶̇A = (𝐹 𝜌⁄ )(CA0 - CA) - Vrk0CAe
-

E

RT            (14) 

VrρCv𝑇̇ = FCp(T0-T) - Vr∆Hk0C
A

e
-

E

RT +Q            (15) 

Q̇ =  Kp𝐶̇A - (K
p
/τi)e                                     (16) 

, where Kp and τi are the controller gain and integral time 

constant, respectively. The controller is used to control the 

outlet reactant concentration CA by manipulating the external 

heat Q. To demonstrate the control performance, the inlet 

concentration CA0 is assumed to be the uncertainty, i.e., g in 

(1), which is operated around a fixed mean with time-invariant 

stochastic variations. However, the exact mean and variance 

of CA0 are unknown to the controller. The objective is to solve 

the optimization problem (12) and execute online tuning of the 

controller in the presence of the input uncertainty in CA0. 

5. RESULTS AND DISCUSSION 

5.1  Model formulation with gPC 

To formulate stability constraints of controllers, the nonlinear 

system defined in (14) ~ (16) is linearized using the steady 

state measurements. To ensure stability, eigenvalues which are 

functions of controller parameters, must be negative. The 
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application of Galerkin projection for building the gPC model 

requires integrating the differential equations with respect to 

an appropriate selected polynomial basis function for a 

specific random variable. The integral is straightforward for 

monominal or polynomial terms. However, the integral of non-

monominal terms such as the Arrhenius term in (16) needs 

approximation with a 2nd order Taylor series expansion. Due 

to the space limitation, details about the stability constraints 

and the formulation of gPC model with an approxiamtion are 

not given in the current work, which can be found in our 

previous work (Du, et al., 2016; Du, et al., 2014). 

5.2  Optimal tuning of controller parameters 

Using the measurements collected at each time instant t, the 

cost of the objective function (11) is minimized with respect to 

the tuning parameters of the PI controller over a finite future 

control horizon. As shown in Fig. 2 (a), the inlet concentration 

is assigned with different values between 0.8 and 1.2 gmol/L. 

An inset as seen in Fig. 2. (b) is used to illustrate the algorithm. 

The mean and variance of the inlet concentration profile of CA0 

in Fig 2 (b) are 1.0 gmol/L and 0.1 gmol/L, respectively. To 

intentionally introduce mismatch in the gPC model, the mean 

and variance of CA0 are assumed to be 1.1 gmol/L and 0.15 

gmol/L, respectively. Based on these values, a gPC model is 

generated offline which is function of controller parameters 

and initial values of states. This is used to decide the discrete 

states in a Markov model and to calculate transition probability 

over the finite future control horizon. Also, 1% measurement 

noise is added to the measured quantities. 

 

Fig. 2. Profile of inlet concentration (CA0) 

The control performance was first studied in this work, i.e., set 

point tracking within finite time. Fig. 3 shows the simulation 

results of the inlet concentration profile CA0 shown in Fig. 2 

(b). The control horizon used in this case study is 100, i.e., 

K=100. The control performance is compared to a robust 

controller with a set of fixed controller parameters, which was 

optimized offline as explained in our previous work (Du, et al., 

2017).  These parameters are Kp=7.5×104 and τi=0.50. For the 

adaptive control strategy, these values are used as the initial 

guesses for tuning of controller parameters. For 16 consecutive 

step changes of CA0 in Fig. 2, Fig. 3 (a) shows the results of the 

controlled variable (CA). As seen, both control strategies can 

realize set point tracking, but the adaptive control algorithm 

proposed in this work can reach the set point faster, i.e., shorter 

transient decay. This will be further discussed below. Fig. 3 (b) 

shows a segment of the simulation results in Fig. 3 (a). It is 

observed that there are transient excursions occurring at the 

beginning of each switch between two step-changes in CA0. 

To evaluate the control performance, Table 1 shows the results 

of comparison between the fixed controller versus the adaptive 

controller, in terms of the transient decay time and the integral 

squared error (ISE) of the controlled variables, for 16 

consecutive step changes shown in Fig. 2 (b). For adaptive 

tuning strategies, two case scenarios were investigated. A 

fixed transition probability in (13) is used to illustrate the 

necessity of updating the transition probability in real time. 

The improvement obtained with the adaptive controller is very 

significant with around 29% reduction in ISE, as compared to 

the fixed controller in the second row. Also, as shown in Table 

1, the transient decay of the adaptive controller, on average, is 

about 16 s shorter than a fixed parameters controller. 

 

Fig. 3. Illustration of the control performance (noise-free 

simulation results are used for clarification) 

Table 1.  Evaluation of the control performance 

Method ISE (CA)×10-4 Decay (s) 

Fixed controller 4.66 97 

Adaptive (fixed p
set
a ) 

Adaptive controller 

3.71 

3.30 

83 

81 

 

In a second study we studied the effect of the horizon length K 

on the control performance. Two different values of K are 

used, i.e., K=100 and K=500, respectively. Fig. 4 shows the 

simulation results of three samples of the inlet concentration. 

Similar to the first case study, as seen in Fig. 4 (a), the 

controlled variable can reach the set point faster and has a 

smaller variability. Fig. 4 (b) and (c) shows the controller 

parameters, i.e., Kp and τi, when K is 100. For illustration, these 

parameters are normalized with respect to initial values used 

in simulations. As seen, the controller parameters exhibit high 

variations after step changes in CA0., which is expected due to 

the use of relatively coarsely discretized with Markov models. 

The controller parameters eventually stabilize at the optimal 

values as seen in Fig. 4 (b) and (c). 

When K is 500, it was found that both controller parameters 

almost remained constant through the simulations, thus 

resulting in more conservative control similar to the predictive 

controllers with long horizon. The simulation results are not 

(a) 
inset shown in (b) 

Step changes of inset in (a) 

  

(b) 

Step changes used in Fig.3 

(a) 

(b) 

  

inset a 

Time (s) 

  

excursions 
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shown for brevity. Note that a control horizon of 500 indexes 

is equivalent to a 50 s simulation in this work. As seen in Fig. 

4 (a), the transient decay on average is approximately 80 s for 

the adaptive self-tuning control strategy, thus resulting in an 

almost constant controller parameter over a long period of 

operations. The controller parameters are found to be around 

Kp = 7.55×104 and τi=0.31, repectively. The normalized values 

are 𝐾𝑝
′=1.0066 and 𝜏𝑖

′= 0.62. 

 

Fig. 4. Normalized tuning parameters of the PI controller 

Fig. 5 shows the probability of the controlled variable CA that 

can be found at a particular discrete state of the Markov model, 

which contains the set point. The first step change of CA0 in 

Fig. 4 (a) is used, i.e., CA0=0.9806 gmol/L, and K is 100 for the 

simulations shown in Fig. 5. As seen, the probability to be in 

the neighbourhood of the set point is smaller during the 

transients that follow a change in the mean value of the inlet 

concentration. After approximately 38 s of the simulation, the 

probability increases and eventually stabilizes around 0.94. the 

probability is different than one due to measurement noise and 

the discretization of the continuous states. 

 
Fig. 5. Profile of transition probability 

In terms of computational efficiency, using the gPC model, the 

calculation of the objective function (11) over a future control 

horizon is ~0.3 seconds on an Intel® CoreTM i7 processor with 

dual-core. It was also found that the use of a larger number of 

future control horizons (K=500) has negligible effect on the 

computational time, which enable the online application. 

6. CONCLUSIONS 

A methodology is proposed for online adaptive tuning of a PID 

controller. The tuning procedure is based on a gPC model and 

a Markov model, which can predict the transitions and its 

probability between states of the controlled variable. Using the 

Markov model, the tuning of controller can be formulated as a 

dynamic programming problem. To overcome computational 

burden, a gPC model is used to predict the probability density 

function (PDF) of the measured quantities, which is discretized 

to rapidly calculate the transition probability. The combination 

of the Markov model with gPC-based uncertainty propagation 

technique is attractive for adaptive model predictive control, 

especially when using inaccurate modelling information. 
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