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Abstract: This paper introduces an Interaction Measure named Prediction Error Index Array
(PEIA), which can be applied both to linear and non-linear systems. The linear PEIA is
constructed as an extension of previous results using the H2-norm. The non-linear PEIA
is an extension for systems represented by Volterra series. Additionally, the paper gives an
interpretation of both linear and nonlinear PEIA based on the prediction error of the structurally
reduced model which results from the control configuration selection. Examples illustrate and
compare the interaction measure with established methodologies, like the relative gain array,
participation matrix, and Hankel Interaction Index array.

1. INTRODUCTION

Prior to the synthesis of controller parameters in a multi-
variable process, a low complexity control configuration is
often selected in a step known as Control Configuration Se-
lection (CCS). One approach is to compose a structurally
reduced model by selecting the most important input-
output interconnections of the complete model. These
interconnections should be considered in the design of the
closed loop system, while the others can be neglected. This
selection is often performed with the use of Interaction
Measures (IMs), which include the modern gramian-based
IMs (Salgado and Conley, 2004). It is well understood
that system gramians can be used to identify the most
significant portions of a system model.

Similarly, system gramians have been used for model re-
duction, which aims at simplifying complex dynamic mod-
els while appropriately representing the system behavior
(Schilders et al., 2008). The difference between the output
of the original model and the output of the structurally
reduced model (denoted as model error), can be treated
as noise and should be kept small for a well defined class
of input signals.

Clearly, the CCS and the model reduction problems are
related. One difference is that CCS often considers several
different criteria based on controllability and observability,
whilst model reduction is focused on minimizing properties
of the prediction error. A natural next step would be to un-
derstand if and how methodologies from model reduction
can be introduced in CCS.

In this paper, the CCS for linear and nonlinear systems
is formulated based on analysis of the prediction error
and controllability analysis, therefore relating to the model
reduction problem. The presented results on linear systems
are based on the use of the H2-norm, which was first used
in the gramian-based IM known as Σ2 for quantifying the
output controllability (Birk and Medvedev, 2003).
1 Corresponding author: Wolfgang Birk, wolfgang.birk@ltu.se

While there is vast host of IMs for CCS in the linear frame-
work, the amount of methods for nonlinear models is still
rather limited. A typical approach to address nonlinear
systems is to apply IMs on a linearized system model for a
specific operating point. Alternatively, nonlinearities can
often be considered as unmodelled dynamics and captured
by an uncertainty description, and the resulting uncer-
tainty bounds can be incorporated in the decision making
process Castaño and Birk (2015b). However, the amount
of methods to handle uncertainty bounds on IMs are still
limited, require complex computations and the decisions
are often conservative (Castaño and Birk, 2016).

The main contribution of this paper is to extend the con-
cept of the prediction error analysis to nonlinear systems,
in order to introduce a new IM for models represented
by Volterra series. Volterra series are a general approach
to define nonlinear systems, and are often used to gener-
alize concepts for their application on nonlinear systems
(Volterra, 2005). For example, Wiener and Hammerstein
systems can be precisely represented by Volterra series,
and the more general modulator-demodulator systems can
also be represented by Volterra series through the use of
power series expansions (Bedrosian and Rice, 1971).

This paper is structured as follows. In Section 2, the Pre-
diction Error Index Array (PEIA) is introduced. Section 3
introduces an extension of the PEIA for its application on
nonlinear systems. Later, Section 4 compares the linear
and nonlinear versions of PEIA with previously existing
IMs. Finally, the conclusions are given in Section 5.

2. LINEAR INTERACTION MEASURE BASED ON
THE PREDICTION ERROR

Preliminaries on linear systems are first given, followed
by the introduction of the Prediction Error Index Array
(PEIA). Later, relationships of PEIA with absolute and
relative measures of the prediction error are derived.
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2.1 System gramians and the H2-norm

Consider the inear process with n inputs and m outputs:
ẋ(t) = Ax(t) +Bu(t) ; y(t) = Cx(t)

where u ∈ Rn×1, y ∈ Rm×1 and x ∈ Rp×1 are the input,
output and state vectors. The process can alternatively be
represented by the transfer function G(s) = C(sI −A)−1B
or by the impulse response g(t), which is the inverse
Laplace transform of G(s).
Σ2 is an IM introduced by Birk and Medvedev (2003) as:

[Σ2]ij =
∣∣Gij ∣∣2

m,n

∑
k,l=1

∣∣Gkl∣∣2

where ∣∣Gij ∣∣2 is the H2-norm of Gij(s).
Different ways to calculate of the H2-norm are:

∣∣Gij ∣∣2 =
√

1

2π
∫

∞

−∞
∣Gij(jω)∣2dω =

√

∫
2π

0
g2
ij(τ)dτ

=
√
trace(BTj QiBj) =

√
trace(CiPjCTi ) (1)

where Pj = ∫
∞

0 eAτBjB
T
j e

AT τdτ is the controllability
gramian related to the j-th input,Qi = ∫

∞
0 eA

T τCTi Cie
Aτdτ

is the obsevabillity gramian related to the i-th output, Bj
is the j-th row of B, and Ci is the i-th row of C.

Eq. 1 leads to different interpretation of the squared H2-
norm as: (1) the output energy when the input is exited
with an input signal with unitary flat power spectral
density (psd), (2) the energy of the impulse response of the
system, (3) a quantification of output controllability (Birk
and Medvedev, 2003). These interpretations indicate the
square of the H2-norm which will be used by PEIA is a
more sensitive measure than the direct use of the H2-norm
by Σ2 in Eq. (1).

2.2 Definition of the linear Prediction Error Index Array.

We adapt the original definition of Σ2, and define an IM
named Prediction Error Index Array (PEIA) as:

[PEIA]ij ≜
∣∣Gij ∣∣22

m,n

∑
k,l=1

∣∣Gkl∣∣22

=
∣∣Gij ∣∣22
∣∣G∣∣22

The name PEIA refers to the direct relationship of
each element with the prediction error committed when
neglecting the corresponding input-output channel. This
relationship will be proven in Subsection 2.4.

In addition to the more direct interpretations than Σ2, the
sum of the individual metrics of the input-output channels
in PEIA is equal to the metric of the complete system:

∑ ∣∣Gij ∣∣22 = ∣∣G∣∣2

This desirable property is a consequence of the gramian
decomposition, and therefore the elements in PEIA express
the contribution of each input-output channel as a fraction
of the global contribution. This property is preserved by
the first introduced gramian-based IMs named Partici-
pation Matrix (Salgado and Conley, 2004) and Hankel
Interaction Index Array (Wittenmark and Salgado, 2002),
but not by Σ2.

The resulting configurations in the following examples are
related to the simplest structurally reduced model with

a contribution larger than 70%. This threshold on the
contribution has to be adapted depending on the size of
the system (Salgado and Conley, 2004). More details can
be found in the literature on procedures and rules to follow
during the selection of a control configuration from an
gramian-based IA (Salgado and Conley, 2004; Castaño and
Birk, 2016).

2.3 Absolute measure of the prediction error.

Denote by:

● Ĝ(ω) the structurally reduced model on which control
will be based.

● ∆G(ω) the model composed by the disregarded IO
channels.

● ŷ(t) ∈Rm,1 the output from the structurally reduced
model Ĝ.

● y∆(t)Rm,1 the prediction error, which is the output
from the model ∆G.

Lemma 1. The squared H2-norm of the model ∆G is the
average power of the prediction error of the structurally
reduced model Ĝ(ω) when the input signals are uncorre-
lated and have flat unitary psd.

Proof: The prediction error is defined as the difference
y∆ = y − ŷ, and its average power is

P (y(t) − ŷ(t)) = lim
T→∞

1

2T
∫

T

−T
yT∆ ⋅ y∆dt = ∫

∞

−∞
trace(Sy∆y∆(f))df

where Sy∆y∆
∈ Rm,m is the power spectral density (psd)

of the prediction error y∆(t). The psd of the output of a
linear system can be expressed as a function of the psd of
its input Suu, leading to

P (y(t) − ŷ(t)) = ∫
∞

−∞
trace(∆G(−f) ⋅ Suu(f) ⋅∆G(f)T )df

Assuming that ui(t) are uncorrelated sequences with flat
unitary psd, then Suu(f) = I:

P (y(t) − ŷ(t)) =
1

2π
∫

∞

−∞
trace(∆G(−ω) ⋅∆G(ω)T )dω

= ∣∣∆G∣∣22 =∑
i,j

∣∣∆Gij ∣∣22

∎
For the case of continuous-time systems, an input signal
with flat unitary psd over all frequencies is not realizable
since it has infinite energy. A band limited noise with
flat band in an interval [a, b] can be used, leading to the
following integral:

P (y(t) − ŷ(t)) = 1

π
∫

b

a
trace(∆G(−ω) ⋅∆G(ω)T )dω

which equals the frequency-limited H2-norm (Vuillemin
et al., 2014) used by Castaño and Birk (2015a) to restrict
CCS to a range of frequencies.

2.4 Relative measure of the prediction error

Denote by:

● Ω̂ = {(i, j) ∶ Gij ∈ Ĝ(ω)}
● ∆Ω ∶ {(i, j) ∶ Gij ∈ ∆G(ω)}

Lemma 2. The sum of the elements of the PEIA (with in-
dexes belonging to ∆Ω) which correspond to the neglected
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I/0 channels in the structurally reduced model ∆G is a
relative measure of the average power of the prediction
error of the structurally reduced model Ĝ when the inputs
are uncorrelated zero mean processes with flat psd.

Proof: Start by relating the power of the output y to the
power of ŷ and y∆:

P (y(t)) = lim
T→∞

1

2T
∫

T

−T
(y∆(t) + ŷ(t))T ⋅ (y∆(t) + ŷ(t))dt

= lim
T→∞

1

2T
∫

T

−T
(y∆(t)T y∆(t) + ŷ(t)T ŷ + 2y∆(t)T ŷ(t))dt

Each of the outputs y∆(t) and ŷ(t) from ∆G and Ĝ, are
zero mean stochastic processes since they are the outputs
of linear systems having zero mean stochastic inputs.
Additionally, [y∆(t)]i and [ŷ(t)]i are clearly uncorrelated,
since the structures of ∆G and G are complementary,
and therefore [y∆(t)]i and [ŷ(t)]i have contributions from
different inputs. Therefore, E([y∆(t)]i ⋅ [ŷ(t)]i) = 0 and

P (y(t)) = lim
T→∞

1

2T
∫

T

−T
(y∆(t)T y∆(t) + ŷ(t)T ŷ(t))dt

= P (y∆(t)) + P (ŷ(t))

The average power of the output is thus the power of
the output from the structurally reduced model plus the
average power of the output from the disregarded channels
∆G. A relative measure of the prediction error is,
P (y(t) − ŷ(t))

P (y(t)) = ∣∣∆G∣∣22
∣∣G∣∣22

=∑
i,j

∣∣∆Gij ∣∣22
∣∣G∣∣22

= ∑
(i,j)∈∆Ω

[PEIA]ij

(2)
∎
Another relevant measure is the ratio of the power of the
structurally reduced model relative to the output of the
original model:

P (ŷ(t))
P (y(t))

=
P (y(t)) − P (y(t) − ŷ(t))

P (y(t))
=
∑
i,j

∣∣Gij ∣∣22 −∑
i,j

∣∣∆Gij ∣∣22

∣∣G∣∣22

=∑
i,j

∣∣Ĝij ∣∣22
∣∣G∣∣22

= ∑
(i,j)∈Ω̂

[PEIA]ij = 1 − ∑
(i,j)∈∆Ω

[PEIA]ij (3)

Example 1.
Consider a process represented by the following multivari-
able transfer function:

G(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2

(s + 1)(s + 2)
−0.8s + 0.55

(s + 5)(s + 2)
−0.5

(s + 4)
2

(s2 + 3s + 20)
2.4

(s2 + 2s + 4)
0.5(̇ − 3.5s + 1)
(s + 4)(s + 5)

0.5

(s + 2)
3

(s + 3)2

6

(s + 2)(s + 5)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4)

The calculation of PEIA results in:

PEIA =
⎛
⎜
⎝

0.2416 0.0347 0.0227
0.0242 0.2609 0.1238
0.0453 0.0604 0.1864

⎞
⎟
⎠

(5)

PEIA 11 + PEIA 22 + PEIA 33 + PEIA 23 = 0.8128 (6)
PEIA 11 + PEIA 22 + PEIA 33 = 0.6890 (7)

The simplest structurally reduced model Ĝ with a con-
tribution larger than 0.7 (see Eq. (6)) is composed by
the input-output channels: {(1,1), (2,2), (3,3), (2,3)}. Ac-
cording to Lemma 1, this structurally reduced model has
a prediction error of approximately (1 − 0.8128) ⋅ 100% =
18.72% measured in terms of output power under an un-
correlated excitation sequence with flat psd. According to
Eq. (7), a diagonal decentralized configuration would be
related to a prediction error of (1−0.6890) ⋅100% = 31.1%.

The contribution of the decentralized configuration is close
to the designed threshold of 0.7, which indicates that
it is appropriate to test a simple diagonal decentralized
configuration and, if the resulting performance is not sat-
isfactory, use the sparse configuration related to Eq. (6).

3. INTERACTION MEASURE FOR NONLINEAR
SYSTEMS BASED ON THE PREDICTION ERROR

In this section, preliminaries on Volterra Series are given,
followed by the calculation of the contribution from each
input to the output variance. This calculation is later used
to define the PEIA for nonlinear systems.

3.1 Introduction to Volterra series.

Subsection 3.1 and Subsection 3.2 consider Single-Input
and Single-Output nonlinear systems represented by:

y(t) =H[u(t)]
If the operator H[⋅] is time-invariant and has finite mem-
ory, its output can be expressed through the Volterra-series
expansion given by (Schetzen, 2006):

y(t) =
∞
∑
k=0

H(k)[u(t)]

where H(k)[]̇ is the k-th order Volterra operator. The term
H(0) is a constant output independent of the input, while
the rest of the terms are given by:

H(k)[u(t)] = ∫
τk∈Rk

h(k)(τ k)
k

∏
r=1

u(t−τr)dτk (k = 1,2, . . . )

where τ k = [τ1, . . . , τk]T contains the k integration vari-
ables, and the functions h(k)(τ k) are the Volterra kernels.
The first order term is the convolution integral typical of
a linear dynamic system with h(1)(τ1) being the impulse
response function. The higher order terms are multiple
convolutions, involving products of the input values for
different time delays. The expanded version of this equa-
tion is given in the Table 1 for different kernel orders.

An alternative representation in the frequency domain is
provided by the Volterra Frequency Response Function
(VFRF), which is the multidimensional Fourier transform
of the Volterra kernels, i.e.

H(k)(Ωk) = ∫
τk∈Rk

e−jΩ
T
k τk ⋅h(k)(τ k)⋅dτ k ; k = (1,2,3, . . . )

where Ωk = [ω1, . . . , ωk]T and H(0) = H(0). In the sequel,
we assume that the kernels represented by h(k)(τ k) or
H(k)(Ωk) are symmetric with respect to permutations in
the variables of the vectors τ k or Ωk respectively. Methods
for the symmetrization of kernels are available in the
literature (Mathews and Sicuranza, 2000).

3.2 Calculating the output variance for nonlinear systems.

The variance of the output variance can be calculated as:
σ2
y = E(y2(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P (y(t))

− [E(y(t))]2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PDC(y(t))

(8)

where PDC(y(t)) is a DC term in the power which is
generated by kernels of even index. The total power
P (y(t)) is calculated integrating the output psd Syy(ω):

P (y(t)) = E(y2(t)) = ∫
∞

−∞
Syy(ω)dω

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

442



where

Syy(ω) =
1

(2π)n−1
∑
p
∫

∞

−∞
[H(ω1, . . . , ωn) ⋅H(ωn+1, . . . , ω2n)]sym

⋅δ0(ω − ω1 − ⋅ ⋅ ⋅ − ωn) ⋅
2n

∏
j,k

Suu(ωj)δ0(ωj + ωk)dω1 . . . dω2n

(9)

where ∏2n
j,k is a product over 2n!/n!2n sets of n un-

ordered pairs of the integers 1, . . . ,2n. For example,
for n = 2, there are 3 sets of 2 unordered pairs:
{(1,2), (3,4)};{(1,3), (2,4)} and {(1,4), (2,3)}. The sum
∑p is performed over the products. 2 The operator [.]sym
denotes the symmetrization of the kernel. More explicit
expressions are possible but complex, since the product
H(ω1, . . . , ωn) ⋅H(ωn+1, . . . , ω2n) is not symmetric in gen-
eral (Bedrosian and Rice, 1971).

E.g. the output power of a 3rd order Volterra Series is:

P (y(t)) = E
⎛
⎝
(

3

∑
k=0

H(k)[u(t)])
2⎞
⎠
= (H(0))

2

+ 2H(0) ∫
∞

−∞
H(2)(ω,−ω)Suu(ω)dω + ∫

∞

−∞
∣H(1)(ω)∣2Suu(ω)dω

+ 2∫
∞

−∞
∫

∞

−∞
∣H(2)(ω1, ω2)∣2 ⋅ ∏

i=1,2

Suu(ωi)dωi

+ ∫
∞

−∞
∫

∞

−∞
H(2)(ω1,−ω1)H(2)(ω2,−ω2) ⋅ ∏

i=1,2

Suu(ωi)dωi

+ 6

∞y

∞
∣H(3)(ω1, ω2, ω3)∣2 ⋅ ∏

i=1,2,3

Suu(ωi)dωi

+ 9

∞y

−∞
H(3)(ω1,−ω1, ω2)H(3)(−ω2, ω3,−ω3) ⋅ ∏

i=1,2,3

Suu(ωi)dωi

+ 6∫
∞

−∞
∫

∞

−∞
H(1)(ω1) ⋅H(3)(−ω1, ω2,−ω2) ⋅ ∏

i=1,2

Suu(ωi)dωi

(10)

For zero-mean Gaussian input, the expected value of the
output signal is (Carassale and Kareem, 2010):

E(y(t)) =
n

∑
k=0

k even

k!

(k/2)!2k/2 ∫ Ωk∈Rk

DkΩk=0
H(k)(Ωk)

k/2
∏
r=1

Suu(ωr)dΩk

where the summation is over even terms and Dk =
[Ik/2, Ik/2], where Ik/2 is the identity matrix of size k/2.

The expanded version of E(y(t)) and E(y(t))2 for a
Volterra series of order 3 are

E (
3

∑
k=0

H(k)[u(t)]) =H(0) + ∫
∞

−∞
H(2)(ω,−ω)Suu(ω)dω

PDC(y(t)) = E (
3

∑
k=0

H(k)[u(t)])
2

= (H(0))
2

+ 2H(0) ∫
∞

−∞
H(2)(ω,−ω)Suu(ω)dω

+
∞x

−∞
H(2)(ω1,−ω1)H(2)(ω2,−ω2)Suu(ω1)Suu(ω2)dω1dω2

(11)

The calculation of the variance σ2
y using Eq. (8) is per-

formed by subtracting Eq. (10) from Eq. (11). which leads
to a cancellation of terms. As examples, Table 1 sum-
marizes the calculation of σ2

y under zero mean Gaussian
inputs with variance σ2

u, for different kernel combinations.
2 For more details see Eq.(92) by Rugh (1981).

K
er

n
el

O
rd

er
s

V
ol

te
rr

a
S
er

ie
s

σ
2 y
=
E

(
y

2
(
t)

)
−
[
E

(
y
(
t)

)
]
2

{0
,1

}
h
(0
)
+
∫∞ −∞

h
(1
) (
τ
)u

(t
−
τ
)d
τ

σ
2 u
∫∞ −∞

∣H
(1
) (
ω
)∣2
d
ω

{0
,2

}
h
(0
)
+
∫∞ −∞

h
(2
) (
τ 1
,τ

2
)u

(t
−
τ 1

)u
(t
−
τ 2

)d
τ 1
d
τ 2

2σ
4 u

s
∞ −∞

∣H
(2
) (
ω

1
,ω

2
)∣2
d
ω

1
d
ω

2

{0
,3

}
h
(0
)
+
∫∞ −∞

h
(3
) (
τ 1
,τ

2
,τ

3
)u

(t
−
τ 1

)u
(t
−
τ 2

)u
(t
−
τ 3

)d
τ 1
d
τ 2
d
τ 3

6σ
6 u
∫∞ −∞
∫∞ −∞
∫∞ −∞

∣H
(3
) (
ω

1
,ω

2
,ω

3
)∣2
d
ω

1
d
ω

2
d
ω

3

+9
σ

6 u
∫∞ −∞
∫∞ −∞
∫∞ −∞

H
(3
) (
ω

1
,−
ω

1
,ω

2
)⋅
H
(3
) (
−ω

2
,ω

3
,−
ω

3
)d
ω

1
d
ω

2
d
ω

3

{0
,1
,2

}
h
(0
)
+
∫∞ −∞

h
(1
) (
τ
)u

(t
−
τ
)d
τ

σ
2 u
∫∞ −∞

∣H
(1
) (
ω
)∣2
d
ω
+

2σ
4 u
∫∞ −∞
∫∞ −∞

∣H
(2
) (
ω

1
,ω

2
)∣2
d
ω

1
d
ω

2

+
∫∞ −∞

h
(2
) (
τ 1
,τ

2
)u

(t
−
τ 1

)u
(t
−
τ 2

)d
τ 1
d
τ 2

{0
,1
,3

}
h
(0
)
+
∫∞ −∞

h
(1
) (
τ
)u

(t
−
τ
)d
τ

σ
2 u
∫∞ −∞

∣H
(1
) (
ω
)∣2
d
ω

+
∫∞ −∞

h
(3
) (
τ 1
,τ

2
,τ

3
)u

(t
−
τ 1

)u
(t
−
τ 2

)u
(t
−
τ 3

)d
τ 1
d
τ 2
d
τ 3

+6
σ

6 u
∫∞ −∞
∫∞ −∞
∫∞ −∞

∣H
(3
) (
ω

1
,ω

2
,ω

3
)∣2
d
ω

1
d
ω

2
d
ω

3

+9
σ

6 u
∫∞ −∞
∫∞ −∞
∫∞ −∞

H
(3
) (
ω

1
,−
ω

1
,ω

2
)⋅
H
(3
) (
−ω

2
,ω

3
,−
ω

3
)d
ω

1
d
ω

2
d
ω

3

+6
σ

4 u
∫∞ −∞
∫∞ −∞

H
(1
) (
ω

1
)⋅
H
(3
) (
−ω

1
,ω

2
,−
ω

2
)d
ω

1
d
ω

2

{0
,1
,2
,3

}
h
(0
)
+
∫∞ −∞

h
(1
) (
τ
)u

(t
−
τ
)d
τ

σ
2 u
∫∞ −∞

∣H
(1
) (
ω
)∣2
d
ω
+

2σ
4 u
∫∞ −∞
∫∞ −∞

∣H
(2
) (
ω

1
,ω

2
)∣2
d
ω

1
d
ω

2

+
∫∞ −∞

h
(2
) (
τ 1
,τ

2
)u

(t
−
τ 1

)u
(t
−
τ 2

)d
τ 1
d
τ 2

+6
σ

6 u
∫∞ −∞
∫∞ −∞
∫∞ −∞

∣H
(3
) (
ω

1
,ω

2
,ω

3
)∣2
d
ω

1
d
ω

2
d
ω

3

+
∫∞ −∞

h
(3
) (
τ 1
,τ

2
,τ

3
)u

(t
−
τ 1

)u
(t
−
τ 2

)u
(t
−
τ 3

)d
τ 1
d
τ 2
d
τ 3

+9
σ

6 u
∫∞ −∞
∫∞ −∞
∫∞ −∞

H
(3
) (
ω

1
,−
ω

1
,ω

2
)⋅
H
(3
) (
−ω

2
,ω

3
,−
ω

3
)d
ω

1
d
ω

2
d
ω

3

+6
σ

4 u
∫∞ −∞
∫∞ −∞
∫∞ −∞

H
(1
) (
ω

1
)⋅
H
(3
) (
−ω

1
,ω

2
,−
ω

2
)d
ω

1
d
ω

2
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3.3 Definition of nonlinear Prediction Error Index Array.

Assume a multivariable system with m outputs and n
inputs, where the i-th output yi is represented by:

yi(t) =H(0)i +
n

∑
j=1

∞
∑
k=1

H(k)ij [uj(t)] (12)

where H(k)ij is the k-th order Volterra operator from the
j-th input uj to yi. The term H(0) is a constant output
independent of the input, and the rest of the terms are:

H(k)ij [uj(t)] = ∫
τk∈Rk

h
(k)
ij (τk)

k

∏
r=1

uj(t − τr)dτk , (k = 1,2, . . . )

The contribution of uj(t) to yi(t) is denoted as yi,j(t):

yi,j(t) =
∞
∑
k=1

H(k)ij [uj(t)]

The PEIA is defined as:

[PEIA]ij ≜
σ2(yi,j(t))
m

∑
i=1

σ2(yi(t))
=

σ2 (
∞
∑
k=1

H(k)ij [u(t)])

m

∑
i=1

n

∑
j=1

σ2 (
∞
∑
k=1

H(k)ij [uj(t)])

Example 2. A Wiener system is considered, with

yi(t) =
3

∑
j=1

(∫
∞

−∞
gij(τ) ⋅ uj(t − τ) ⋅ dτ)

2

(13)

where gij(τ) is the impulse response of the single-input-
single-output linear systems in Eq. (4).

The contribution yi,j(t) of input uj(t) to output yi(t) is:

yi,j(t) = (∫
∞

−∞
gij(τ)uj(t − τ)dτ)

2

=
∞x

−∞
∏

k={1,2}
gij(τk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h
(2)
ij
(τ1,τ2)

uj(t− τk)dτk

which shows that each output yi is given by a Volterra
series with second order kernels h(2)ij (τ1, τ2) and the VFRF:

H
(2)
ij (jω1, jω2) =

∞x

−∞
∏

k={1,2}
e−jωkτkgij(τk)dτk = Gij(jω1)⋅Gij(jω2)

To determine PEIA, we need to calculate the 2-dimensional
integrals of the squared magnitude of the VFRF for each of
the second order kernels as indicated by the second row in
Table 1. As an example, we derive analytically the integral
of the squared magnitude of the VFRF for a first order
system with a quadratic linear output. That is, for the
subsystems (i, j) = (1,3) and (i, j) = (3,1):

σ2(yi,j(t)) = σ2 ⎛
⎝
(∫

∞

−∞

Kij

Tij
e−τ/Tij ⋅ u(t − τ)dτ)

2⎞
⎠

= 2σ4
uj

x
∣

Kij

(1 + Tijω1)
⋅

Kij

(1 + Tijω2)
∣
2

dω1dω2 = 2σ4
uj
K4
ijπ

2/T 2
ij

(i, j) = {(1,3), (3,1)}
K13 = −0.5/4, K31 = 0.5/2, T13 = 1/4, T31 = 1/2

A similar calculation for rest of the VFRFs leads too:

PEIA =
⎛
⎜
⎝

0.3163 0.0065 0.0028
0.0032 0.3690 0.0831
0.0111 0.0198 0.1883

⎞
⎟
⎠

PEIA 11 + PEIA 22 + PEIA 33 + PEIA23 = 0.8736

which means that the structurally reduced model com-
posed the diagonal input-output channels has a variance
of the prediction error of approximately 13% with zero-
mean Gaussian excitation.

4. COMPARISON WITH LINEAR INTERACTION
MEASURES

Consider a MIMO nonlinear system represented by Eq. (12).
A small signal linearization would lead to:

yi(t) =H(0)i +
n

∑
j=1

H(1)ij [uj(t)] =H(0)i +
n

∑
j=1
∫

∞

−∞
h
(1)
ij (τ) ⋅uj(t− τ) ⋅ dτ

Lemma 3. The value of the nonlinear PEIA when the
variance of the excitation signal tends to 0 is equal to the
value of PEIA for the small signal linearization.

Proof:

lim
σu→0

[PEIA]ij = lim
σu→0

σ2 (
∞
∑
k=1

H(k)ij [uj(t)])

m

∑
i=1

n

∑
j=1

σ2 (
∞
∑
k=1

H(k)ij [uj(t)])

= lim
σu→0

σ2
uj ∫

∞
−∞ ∣H(1)ij (ω)∣2dω . . . . . .

m,n

∑
k,l=1

σ2
u ∫

∞

−∞
∣H(1)
kl

(ω)∣2dω . . . . . .

+2σ4
uj ∫

∞
−∞ ∫

∞
−∞ ∣H(2)ij (ω1, ω2)∣2dω1dω2 + . . .

+2σ4
u ∫

∞
−∞ ∫

∞
−∞ ∣H(2)

kl
(ω1, ω2)∣2dω1dω2 + . . .

=
∫
∞
−∞ ∣H(1)ij (ω)∣2dω

m,n

∑
k,l=1

∫
∞

−∞
∣H(1)
kl

(ω)∣2dω
=

∣∣H(1)ij ∣∣22
m,n

∑
k,l=1

∣∣H(1)
kl

∣∣22

∎ Example 3.
Assume an output nonlinearity such that:
y1(t) =x11(t) + x11(t)2 + x11(t)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y1,1

+x12(t)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
y1,2

+x13(t) + x13(t)2 + x13(t)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y1,3

y2(t) =x21(t) + x21(t)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y2,1

+x22(t) + x22(t)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y2,2

+x23(t) + x23(t)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y2,3

y3(t) =x31(t) + x31(t)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y3,1

+x32(t) + x32(t)2 + x32(t)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y3,2

+x33(t) + x33(t)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y3,3

where xij(t) is the output of the subsystem Gij in Eq. (4).

An approximation for small signals around u0 = [0,0,0]T
leads to the linear model in Eq. (4).

Applying other linear gramian-based IMs result in:
PM = HIIA =

⎛
⎜
⎝

0.4175 0.0124 0.0045
0.0157 0.3122 0.0249
0.0181 0.0482 0.1465

⎞
⎟
⎠

;
⎛
⎜
⎝

0.2801 0.0405 0.0295
0.0489 0.2291 0.0519
0.0590 0.0949 0.1662

⎞
⎟
⎠

PM11 + PM22 + PM33 = 0.8762 ; HIIA11 +HIIA22 +HIIA33 = 0.6754

The three gramian-based IMs indicate the diagonal config-
uration as the most adequate decentralized configuration.

The RGA for the linearized model is:

RGA =
⎛
⎜
⎝

0.9680 −0.0081 0.0401
−0.0206 1.0425 −0.0220
0.0526 −0.0344 0.9819

⎞
⎟
⎠

The RGA is only applicable for the design of decentralized
configurations, being the preferred input-output pairings
those with values close to 1. The RGA indicates the same
decentralized configuration as the gramian-based IMs.
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For the calculation of the nonlinear PEIA, each of the
outputs yi can be represented by a Volterra series as

H(k)ij [uj(t)] = ∫
τk∈Rk

k

∏
r=1

gij(τr)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h
(k)
ij (τk)

k

∏
r=1

uj(t − τr)dτ k

Using Table 1 derives in the following simplifications for
the input-output channels with three Kernels:

σ2
yi,j

= σ2
uj ∫

∞

−∞
∣Gij(jω)∣2dω + 8σ4

uj
(∫

∞

−∞
∣Gij(jω)∣2dω)

2

+ 15σ6 (∫
∞

−∞
∣Gij(jω)∣2dω)

3

, for (i, j) ∈ {(1,1), (1,3), (3,2)}

Calculating the nonlinear PEIA for σ2
u = 10−5, leads to

the same result obtained for the linear case in Eq. (5),
which validates that the calculation of the nonlinear PEIA
for small signals converges to the value of PEIA for
the linearization. Using a rigorous threshold of 0.7 for
the contribution of the structurally reduced model leads
to an sparse configuration including the following input-
output channels {(1,1), (2,2), (3,3), (2,3)}.
An increase of the input variance to 0.005 results in:

PEIA 0.005 =
⎛
⎜
⎝

0.2497 0.0330 0.0217
0.0231 0.2658 0.1179
0.0437 0.0587 0.1863

⎞
⎟
⎠

[PEIA 0.005]11 + [PEIA 0.005]22 + [PEIA 0.005]33 = 0.7019

This increase in the output variance leads to operating
conditions with a different control configuration. There is
an increase in the diagonal dominance of the system and
a decentralized diagonal controller is suggested.

Increasing the input variance to 0.36 leads to:

PEIA 0.36 =
⎛
⎜
⎝

0.3694 0.0034 0.0037
0.0027 0.4059 0.0122
0.0096 0.0180 0.1752

⎞
⎟
⎠

[PEIA 0.36]11 + [PEIA 0.36]22 + [PEIA 0.36]33 = 0.9504

which indicates that a diagonal controller is expected to
behave almost as three independent SISO loops.

In this example, different excitation level results in dif-
ferent significance of the input-output channels, due to
a different contribution of the nonlinearities. A higher
level of excitation can be understood as a wider desired
operating range.

5. CONCLUSIONS

A new Interaction Measure for Control Configuration
Selection is introduced under the name Prediction Error
Index Array (PEIA), which aids in the selection of a
structurally reduced model for the design of a closed loop
system. It has been shown that the sum of the values of
the PEIA of the neglected input-output channels is equal
to the variance (power) of the prediction error.

Using the Volterra series approach, the PEIA could be
extended to nonlinear systems with the same properties.
The most compelling property of the suggested method
is that the indications for nonlinear systems converge
to the ones for the linearized case, when the operating
range becomes narrow and close to the operating point,

used for the linearization. Moreover, it is also shown
that wider operating ranges of a nonlinear system may
render different control configurations than for narrow
operating ranges. In that case it could also be observed
that the recommeneded control configuration might have
less complexity.
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