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Abstract: Online estimation of internal states and parameters is often required for process monitoring,
control and fault diagnosis. The conventional approach to estimate drifting parameters is to artificially
model them as a random walk process and estimate them simultaneously with the states. However,
tuning of the random walk model is not a trivial exercise. Recently, Valluru et al. (2017) have developed
a moving window based state and parameter estimator which assumes that the parameters change slowly
and remain constant within the window. Also, in another development, a moving window based recursive
filter, receding horizon nonlinear Kalman (RNK) filter has been proposed by Rengaswamy et al. (2013).
In this work, a novel simultaneous state and parameter estimator is proposed by combining the window
based parameter variation model with RNK filter formulation. The performance of the RNK based
estimator is demonstrated by conducting simulation studies on the benchmark quadruple tank system
and a CSTR system. The efficacy of RNK based estimator is compared with that of the conventional
simultaneous EKF approach and Moving Horizon Estimator (MHE) based state and parameter approach.
Analysis of the simulation results reveals that the proposed state and parameter estimation scheme is able
to generate better estimation performance than that of the simultaneous EKF and closer to that of the
MHE based parameter estimator with less computational efforts.

Keywords: State and Parameter Estimation, Moving window estimation, Receding-horizon Nonlinear
Kalman filter, Extended Kalman Filter.

1. INTRODUCTION

In many engineering applications, online estimation of internal
states and parameters of a system has become necessary for
effective process monitoring and efficient control. Many of the
quality related state variables are difficult to measure and often
too costly to measure online. Thus, a cost effective approach is
to employ dynamic model based state estimation for estimating
unmeasured and/or less frequently measured variables at a fast
and regular rate (Patwardhan et al. (2012)). The efficacy of
the state estimation critically depends on the accuracy of the
model parameters. Due to the slow drifting of the model param-
eters/unmeasured disturbances, efficacy of the dynamic model
based soft sensors deteriorates over time. This leads to biased
state estimates, which, in turn deteriorates the performance of
the model based monitoring and control schemes. Thus, to
continue to accrue benefits of model based monitoring and
control systems, parameters/unmeasured disturbances need to
be estimated simultaneously with the states (Soroush (1998)).

Various methods for parameter estimation of nonlinear models
are available in the literature which are based on filtering or
approximation of the likelihood based approaches. In the con-
ventional filtering based approach, the parameters are modelled
as random walk process and this model is combined with the

1 Corresponding author (e-mail: sachinp@iitb.ac.in)

process model. This combined model is used for developing any
nonlinear Bayesian estimators, such as Extended Kalman Filter
(EKF), Unscented Kalman Filter (UKF), Ensemble Kalman Fil-
ter (EnKF) or Moving Horizon Estimator (MHE), for simulta-
neous state and parameter estimation. The random walk model
artificially assumes that the parameters vary at every sampling
instant. In practice, however, the system parameters change at a
significant rate. The main difficulty in this approach is in choos-
ing appropriate distribution of the parameter noise (Patwardhan
et al. (2012)). Further, the tuning of noise covariance of random
walk model is non-trivial particularly for a larger dimensional
system. Moreover, the choice of the parameter covariance has a
significant influence on the estimator performance and a wrong
choice can even destabilize the estimator (Valluru et al. (2017)).
Recently, Valluru et al. (2016) and Valluru et al. (2017) has
developed a moving window maximum likelihood estimator
which simultaneously estimates states and parameters. Here,
it is assumed that the parameters are changing slowly and are
assumed to remain constant over a time window in the immedi-
ate past. The advantage of this approach is that the only tuning
parameter is the length of the moving window, which is much
easier to select than selecting the covariance of the random walk
model. A similar simultaneous state and parameter estimation
strategy has been proposed in MHE framework by Huang et al.
(2010). A distinct advantage of MHE based formulation is that
simultaneous smoothing of the states is carried out while es-
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timating the parameters. However, MHE is a computationally
intensive approach and, as a consequence, difficult to use for
large dimensional systems.

Rengaswamy et al. (2013) has introduced a new estimation ap-
proach called the Receding-horizon Nonlinear Kalman (RNK)
filter for estimating states over a time window. This approach
also carries out smoothing of the state estimates. It has been
shown that the RNK approach has a significant computational
advantages over MHE approach with tradeoff in the perfor-
mance. State and parameter estimation using the random walk
model approach can also be formulated choosing RNK filter as
a filtering algorithm. However, this leads to the same drawback
as mentioned earlier, i.e., difficulty in tuning of the parameter
covariance.

In this work, taking from the motivation of Valluru et al. (2017),
an RNK based estimator is developed for simultaneous estima-
tion/smoothing of the states and estimation of slowly changing
parameters/unmeasured disturbances. The performance of the
proposed RNK state and parameter estimator is compared with
the simultaneous EKF and MHE approach. The efficacy of the
proposed formulation is demonstrated by conducting simula-
tion studies on the benchmark quadruple tank system and a
continuously stirred tank reactor (CSTR) system.

The rest of the manuscript is organized as follows. Section 2
develops the approaches for state and parameter estimation.
The simulation case studies are discussed in Section 3. Main
conclusions derived from the simulation studies and future
work are discussed in Section 4.

2. STATE AND PARAMETER ESTIMATION

2.1 Process Model

Consider a continuous time nonlinear model represented by the
following ODE:

dx
dt

= f(x(t),u(t),θθθ) (1)

where, x ∈ Rn denotes the state vector, u ∈ Rm denotes the
manipulated inputs and θθθ ∈ Rp denotes the unmeasured dis-
turbance/parameter vector. Here, f(.) is a known non-linear
function vector of dimension (n× 1). Under the assumptions
considered by Valluru et al. (2017), the true system dynamics
represented by (1) can be represented in discrete form as fol-
lows :

xk+1 = F(xk,uk,θθθ)+wx,k (2)

where wx,k ∈ Rn is assumed to be a zero mean Gaussian
white noise process with covariance matrix Q ∈ Rn×n. Under
the normal operating conditions, the measurements (y) are
available at a regular sampling interval (T ) i.e.,

yk = Cxk +vk (3)

where, C ∈ Rv×n denotes the measurement matrix, vk ∈ Rv

denotes measurement noise at instant k, which is modeled
as zero mean Gaussian white noise process with covariance
matrix R ∈ Rv×v. Further, the state disturbances, wx,k, and the
measurement noise, vk, are assumed to be uncorrelated.

Assumption 1: It is assumed that the model parameters, θθθ ,
change slowly and remain constant over the time window in
the immediate past, i.e., [k−N,k].

2.2 State Estimation using Receding-horizon Nonlinear Kalman
(RNK) Filter

RNK is a moving window based recursive formulation that
involves prediction and update steps similar to the conventional
Kalman filter (Rengaswamy et al. (2013)). To find the filtered
estimates at kth instant, it is assumed that the N measurements
are available over a window [k− N + 1,k]. Also, the states,
x̂k−N|k−N , and the covariance, Pk−N|k−N , at (k−N)th instant are
assumed to be known. The prediction and update steps for RNK
are as follows:

Prediction Step
In the prediction step, the filtered estimate x̂k−N|k−N at the (k−
N)th time instant is used to find all the predicted estimates in
the interval [k−N + 1,k], by using the state evolution model
described as

x̂l|k−N = F(x̂l−1|k−N ,ul−1,θθθ) (4)
where, l varies from k−N+1 to k. In other words, the predicted
estimates are obtained by performing open loop simulation of
(4), under the assumption that E[wx,l ] = 0 over the interval.
These predicted states are denoted as x̂k−N+1|k−N , x̂k−N+2|k−N
. . . x̂k|k−N . At time k, if a stacked state vector is defined as

Xa
k = [xT

k−N+1 xT
k−N+2 . . . xT

k ]
T (5)

then the stacked predicted state estimates can be represented as
follows

X̂a
k|k−N = [x̂T

k−N+1|k−N x̂T
k−N+2|k−N . . . x̂T

k|k−N ]
T (6)

At kth time instant, the error covariance matrix of the stacked
predicted states is a matrix consisting of Nn× Nn elements
represented as

Pa
k|k−N = E[(Xa

k− X̂a
k|k−N)(X

a
k− X̂a

k|k−N)
T ] (7)

This is a block matrix consisting of n× n block elements P.
The (i j)th block matrix of the predicted error covariance matrix
Pa

k|k−N is defined as

Pa
k|k−N(i, j) = E[(xk−N+i− x̂k−N+i|k−N)(xk−N+ j− x̂k−N+ j|k−N)

T ] (8)

where, i and j varies from 1 to N. The diagonal matrices
of the predicted error covariance matrix represents the auto-
covariance matrices of the estimation errors in the open loop
state estimates at same time instants and the off-diagonal ma-
trices of the predicted error covariance matrix represents the
cross-covariance matrix between the open loop estimation er-
rors at different time instants. The error covariance matrix is
calculated using the linearized state transition matrices which
is defined as

ΦΦΦl = exp
( ∂

∂x
f(x(t),u(t),θθθ)|x̂l|k−N

Ts
)

(9)

for l = k− N + 1, . . . ,k. The first block of error covariance
matrix Pa

k|k−N is initialized as

Pa
k|k−N(1,1) =ΦΦΦk−NPk−N|k−NΦΦΦ

T
k−N +Q (10)

The remaining blocks of Pa
k|k−N are computed as follows:

When i = j (i.e., diagonal blocks)
Pa

k|k−N(i, i)=ΦΦΦk−N+i−1P
a
k|k−N(i−1, i−1)ΦΦΦT

k−N+i−1+Q (11)

When i 6= j and i < j (i.e., upper triangular blocks)
Pa

k|k−N(i, j) = Pa
k|k−N(i, j−1)ΦΦΦT

k−N+ j−1 (12)

Since Pa
k|k−N is symmetric matrices, the lower triangular

blocks can be calculated by taking transpose of the upper tri-
angular blocks.
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Update Step
The update step involves merging of the predicted state esti-
mates X̂a

k|k−N with the stacked measurements

Ya
k = [yT

k−N+1 yT
k−N+2 . . . yT

k ]
T (13)

in the time window [k−N +1,k]. The updated state estimates

X̂a
k|k = [x̂T

k−N+1|k x̂T
k−N+2|k . . . x̂T

k|k]
T (14)

for linear measurement model and unconstrained case are ob-
tained as follows

Ka = Pa
k|k−NCaT

(CaPa
k|k−NCaT

+Ra)−1 (15)

X̂a
k|k = X̂a

k|k−N +Ka[Ya
k−CaX̂a

k|k−N ] (16)
Pa

k|k = (I−KaCa)Pa
k|k−N (17)

where,Ca = block diag(C, C . . . C) and (18)
Ra = block diag(R, R . . . R) (19)

The solutions obtained at the kth instant are the filtered state
estimates x̂k|k and for the other time instants k−N + j (1 ≤
j < N) corresponds to the smoothed estimates x̂k−N+ j|k. Also
the updated augmented error covariance Pa

k|k gives the filtered
estimates for the error covariance matrix at time k and smoothed
estimates for the error covariance matrix in the interval k−N+
1 to k−1.

For nonlinear systems, Rengaswamy et al. (2013) have recom-
mended the use of smoothed state estimate and the associated
covariance matrix obtained from the window [k−N,k− 1] for
initializing the prediction step. Thus, instead of using x̂k−N|k−N ,
Pk−N|k−N , the smoothed estimates obtained from the previous
x̂k−N|k−1, Pk−N|k−1 are used to initialize the predictions. They
have also shown that these modifications works better in the
constrained nonlinear state estimation problems.

MHE is the only other approach available for moving window
based state estimation. In MHE formulation, however, inte-
gration of ODEs needs to be performed repeatedly within an
optimization loop resulting in a large computational load. This
might prohibit the MHE approach from being used in online
applications particularly when the system dimension is large.
On the other hand, in RNK only a single integration is required
at every estimation step. This leads to a very significant com-
putational gain over MHE.

2.3 Simultaneous State and Parameter Estimation using RNK
Filter

In this work, taking motivation from Valluru et al. (2017), a
state and parameter estimator is developed using RNK un-
der the assumption that the parameter vector, θθθ , remains con-
stant over the window [k−N + 1,k]. This approach implicitly
assumes that the variation of parameter occurs significantly
slower rate than the rates at which the states and the manip-
ulated inputs change over a time window, [k− N + 1,k], in
the recent past. The proposed algorithm to find the parameter
vector, θθθ , at time instant k over the window [k−N +1,k] is as
follows

θ̂θθ [k−N+1,k] = min
θθθ

ψ(θθθ) (20)

Subject to:
x̂l|k−N(θθθ) = F(x̂l−1|k−N ,ul−1,θθθ) (21)

x̂k−N|k−N = x̂k−N|k−1 (22)

ΦΦΦl = exp
( ∂

∂x
f(x(t),u(t),θθθ)|x̂l|k−N

Ts
)

(23)

l = k−N +1, . . . ,k

Pa
k|k−N(1,1) =ΦΦΦk−NPk−N|k−1ΦΦΦ

T
k−N +Q

Pa
k|k−N(i, i) =ΦΦΦk−N+i−1P

a
k|k−N(i−1, i−1)ΦΦΦT

k−N+i−1 +Q
Pa

k|k−N(i, j) = Pa
k|k−N(i, j−1)ΦΦΦT

k−N+ j−1
f or i 6= j and i < j

Pa
k|k−N( j, i) = Pa

k|k−N(i, j)T

i, j = 1, . . . ,N


(24)

Ka = Pa
k|k−NCaT

(CaPa
k|k−NCaT

+Ra)−1 (25)

X̂a
k|k(θθθ) = X̂a

k|k−N(θθθ)+Ka[Ya
k−CaX̂a

k|k−N(θθθ)] (26)

Pa
k|k = (I−KaCa)Pa

k|k−N (27)

ζ̂ζζ
a
(θθθ) = [X̂a

k|k(θθθ)− X̂a
k|k−N(θθθ)] (28)

ε̂εε
a(θθθ) = [Ya

k−CaX̂a
k|k(θθθ)] (29)

ψ(θθθ) = ζ̂ζζ
aT

(θθθ)Pa
k|k−N

−1
ζ̂ζζ

a
(θθθ)+ ε̂εε

aT
(θθθ)(Ra)−1

ε̂εε
a(θθθ) (30)

θθθ ∈ ΩΩΩθ (31)
Here, ΩΩΩθ represents a set over which θθθ is constrained to take
values. Thus, this approach simultaneously estimates the states
using RNK while estimating for the slowly drifting parame-
ters/unmeasured disturbances. The optimization problem for-
mulated over the window [k−N + 1,k] is connected with the
optimization problem formulated over the window [k−N,k−1]
through the use of, θ̂θθ [k−N,k−1], as an initial guess for, θ̂θθ for
window [k−N +1,k].

The weighting matrix, Pa
k|k−N , appearing in the objective func-

tion (20), are time varying and are functions of the decision
variable, θθθ , which results in a non-convex nonlinear optimiza-
tion problem. The proposed method uses only the window size
N as an explicit tuning parameter.

2.4 Simultaneous State and Parameter Estimation using Moving
Horizon Estimator (MHE)

Moving horizon estimation is an optimization approach that
uses a series of measurements over a time window and esti-
mates states along with unknown disturbances. A formulation
of MHE for simultaneous state and parameter estimation was
proposed by Huang et al. (2010). In this version of MHE, the
assumptions regarding the variation of parameters/unmeasured
disturbances are similar to that of Valluru et al. (2017). By
this approach, the simultaneous state and parameter estimation
algorithm is formulated as follows:

min
xk−N ,...,xk,θθθ

ΦΦΦ(xk−N)+
1
2

k

∑
j=k−N

vT
j R−1v j+

1
2

k−1

∑
j=k−N

wT
x, jQ

−1wx, j

(32)
Subject to:

wx, j = x j+1− f(x j,u j,θθθ) (33)

v j = y j−g(x j) (34)

θθθ ∈ ΩΩΩθ , j = k−N, ...,k (35)
Here, ΦΦΦ(xk−N) is known as the arrival cost. In the present work,
the arrival cost is estimated as follows

ΦΦΦ(xk−N) =
1
2
(xk−N − x̂k−N|k−N)

T
ΠΠΠ
−1
k−N|k−N(xk−N − x̂k−N|k−N) (36)

where, x̂k−N|k−N is the updated state estimates and ΠΠΠk−N|k−N is
the updated covariance generated using the EKF.
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2.5 State and Parameter Estimation using Simultaneous EKF

The conventional observer based approach for estimation of
the unmeasured disturbances/parameters is to assume that their
variation can be captured using the random walk model, i.e.

θθθ k+1 = θθθ k +wθ ,k (37)
where, wθ ,k, is assumed to be zero mean Gaussian white noise
process with covariance matrix Qθ . The matrix Qθ is assumed
to be diagonal and the individual variances are treated as the
tuning parameters. The state dynamics given by vector, xk is
augmented with the random walk model for the parameters and
the resulting augmented model is used for simultaneous estima-
tion of the states and the parameters/disturbances. Consider the
augmented state vector Xk = [xT

k θθθ T
k ]

T , and an augmented noise
vector, Wk = [wT

x,k wT
θ ,k]

T with covariance Qa = Cov(WT
k ) =

diag[Qx Qθ ]. The augmented dynamic model is represented as
follows:

Xk+1 = F (Xk,uk)+Wk (38)
yk = CaXk +vk (39)

F [.] =

[
F(Xk,uk,θθθ k)

θθθ k

]
(40)

where, Ca = [Cx [0]]
The above augmented model is used for developing simultane-
ous EKF which estimate states and parameters.

3. SIMULATION STUDIES

3.1 Quadruple Tank (QT) System

To demonstrate the effectiveness of the proposed RNK based
state and parameter estimator, estimation performance of the
proposed approach is compared with performances of the con-
ventional simultaneous EKF approach and MHE approach de-
scribed in section 2.4 by performing simulation studies on
the benchmark quadruple tank system (Johansson (2000)). De-
pending on the operating point, the quadruple tank system can
behave as a minimum phase or a non-minimum phase system.
In simulation studies, the system is operated in the open loop
and under the non-minimum phase operating conditions. The
dynamics of quadruple tank system is governed by the set of
ODEs that can be referred from Johansson (2000).

The manipulated variables are the pump voltages ranges from
0 to 5 V , denoted as U = [ v1 v2 ]

T and the measured outputs
are the levels of bottom two tanks (Tank 1 and Tank 2) ranges
from 0 to 20 cm. The nominal values of model parameters
and relevant steady state operating conditions can be found in
Johansson (2000).

For simulation studies sampling interval is chosen as 5 seconds.
The manipulated inputs are perturbed in the neighborhood of
their steady state values by introducing a Pseudo Random Bi-
nary Signal (PRBS) of amplitude 0.5V and frequency range
[0,0.05π/Ts]. The state and the measurement noise are simu-
lated as zero mean Gaussian random signals with the covariance
matrices Q = 0.05× I4×4 and R = 0.05× I2×2, respectively.

Here the leaks occurring at the bottom of the Tank 1 and Tank
2 have been investigated, which are modelled as changes in
model parameters, a1 and a2. For sampling instant k = 16 to
k = 115, a1 is set to 115% of its nominal value, keeping a2
constant at the nominal value. Subsequently, from sampling
instant k= 166 to k= 265, a2 is set to 115% keeping a1 constant

at the nominal value. From k = 316 to k = 415, both a1 and
a2 are set to 110% of their nominal value. Other than these
instants, at every other instant a1 and a2 are maintained at their
nominal values. Thus, initially the leaks are introduced one at a
time. Later, leaks are introduced in both tanks simultaneously.
The bounds on the unmeasured parameters is taken to be 0.01≤
ai ≤ 0.1, where i = 1,2.

The effectiveness of the estimators are assessed using the aver-
age sum of squared estimation error (ASSEE) defined as

(ASSEE)i =
1
Nr

Nr

∑
j=1

Ns

∑
k=1

(xk,i, j− x̂k|k,i, j)
2 (41)

where xk,i represents the true value of ith state at the kth instant,
x̂k|k,i represents the estimated value of ith state at the kth instant,
Ns represents the simulation size and Nr represents number of
realizations. For simulation of quadruple tank system, Ns = 570
and Nr = 10 have been considered. The performance of the esti-
mators is also assessed by computing the average computation
time.
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0.085
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(s

q.
cm

)

 

 

0 100 200 300 400 500
0.055

0.06
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0.07

a 2
(s

q.
cm

)

Sampling instant

Simultaneous EKF RNK MHE True

Fig. 1. QT System: Comparison of parameters a1 and a2 using
Simultaneous EKF, RNK based estimator and MHE

Table 1. QT System: Comparison of ASSEE values
of states and parameters

Variables EKF RNK MHE
x1 18.9781 21.2041 15.7950
x2 14.5438 15.3674 10.7292
x3 7.6947 6.9997 8.3680
x4 14.4290 10.1617 11.2090
a1 0.0034 0.0027 0.0027
a2 0.0048 0.0019 0.0020

Table 2. QT System: Comparison of computational
times

Method EKF RNK MHE
Computational time (s) 0.0037 3.91 179.35

The proposed RNK based estimator with window size N = 10,
MHE estimator with horizon length N = 10 and simultane-
ous EKF with covariance matrix QQQθθθ = 10−3diag[a1 a2] are
compared for the estimated parameters in Figure (1). Also,
comparison of performance of these filters in terms of ASSEE
values is presented in Table 1. For measured states x1 and x2,
the MHE estimator generates better results when compared
to simultaneous EKF and RNK based estimator. However, for
unmeasured states x3 and x4, RNK based estimator generates
better estimates when compared to both simultaneous EKF and
MHE estimators. For parameters a1 and a2, the RNK based es-
timator generates significantly better estimates when compared
to that of simultaneous EKF estimates, whereas, it gives similar
estimates as that of MHE estimator.
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Table 2 reports the average computation time for implementa-
tion of simultaneous EKF, RNK and MHE estimators using a
3.3 GHz Intel Xeon E3 processor and Matlab (version R2013a)
function, fmincon. The computational cost associated with pro-
posed RNK estimator is high compared to simultaneous EKF
approach but it is significantly less when compared to MHE
estimator. Thus, RNK based estimator is able to give close
results as that of MHE based parameter estimator with much
less computational time.

0 100 200 300 400 500
0.065

0.07

0.075

0.08

0.085
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(s

q.
cm

)
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Sampling instant

N=10 N=20 N=30 True

Fig. 2. QT System: Comparison of parameters a1 and a2 using
RNK based estimator for different horizon lengths

Table 3. QT System: Comparison of ASSEE values
of states and parameters for RNK based estimator

Variables RNK
N = 10 N = 20 N = 30

x1 21.2041 22.8669 23.6301
x2 15.3674 16.7255 17.5996
x3 6.9997 7.1363 8.2493
x4 10.1617 10.1962 10.9561
a1 0.0027 0.0032 0.0040
a2 0.0019 0.0023 0.0028

To examine the effect of choice of horizon length, performances
of the RNK based estimator is compared for three different
choices of horizon lengths i.e., N = 10, 20 and 30 which are
presented in Figure (2). As the length of the horizon increases
in the RNK estimator, the estimates of unmeasured parameters
and states become smoother. However, the ASSEE values re-
ported in Table 3 for the states and parameters obtained using
RNK estimator increases with increase in the horizon size due
to increase in the delay.

3.2 CSTR System

The aim of this example is to demonstrate applicability of the
proposed approach to a chemical process. The CSTR system
which is considered undergoes a reversible exothermic reaction
of the type A 
 B. The dynamic model, the nominal parameters
and the optimal operating steady state conditions used in the
simulation studies of CSTR system can be found in Deshpande
et al. (2009). Inlet temperature (Ti) and inlet flow rate (Fi)
are the manipulated inputs for the system. Kinetic forward rate
constant (k f ) is treated as a slowly varying model parameter.

The sampling time Ts for the process is chosen as 0.4 min. The
state dynamics is added with the state noise as given in (2) and
has zero mean with covariance Q = diag[0.0052 0.0052 0.152

0.0022]. The composition Cb and reactor level (h) are assumed
to be measured. The noise in these measurements has zero mean
with covariance R = diag[0.0052 0.0012]. The estimator is
initialized with x̂0|0 = [0.4912 0.5088 438.49 0.16]T and

P0|0 = 5×Q. For simulation of CSTR system, Ns = 2445 and
Nr = 5 have been considered for calculating ASSEE values.

The manipulated input variables, Fi and Ti are perturbed in
the neighborhood of their steady state values by introducing
a Pseudo Random Binary Signal (PRBS) in the frequency
range of [0,0.05π/Ts]. Also, the unmeasured parameter, k f , is
assumed to change as follows: at 250th sampling instant, a ramp
disturbance is given in the parameter, k f , and is held till the
magnitude of the parameter reaches −20% of its nominal base
value (see Figure (3) and Figure (4)).

Here, the performance of the proposed RNK based parameter
estimator is compared with the simultaneous EKF approach.
Initially, the performance of simultaneous EKF approach is
studied for different parameter covariance matrices, QQQθθθ . The
covariance matrix, QQQθθθ , is chosen in proportional to the nominal
value of the parameter k f . The estimates are generated by
simultaneous EKF for the following high, medium and low
choices of QQQθθθ represented as

QQQθθθ ,high = 10−4× k̄ f
2

QQQθθθ ,medium = 10−6× k̄ f
2

QQQθθθ , low = 10−8× k̄ f
2

 (42)

From Figure (3), it can be seen that the choice of covariance
matrix QQQθθθ has a significant influence on the parameters. For
high QQQθθθ , the estimates of simultaneous EKF are noisy and for
medium QQQθθθ , the estimates are able to track the true states with
a little bias in the transient region. However, for the choice of
low QQQθθθ , simultaneous EKF is unable to track the true parameter
variation during the transient. The ASSEE values for states
and parameters using simultaneous EKF are presented in Table
4. The ASSEE values for medium QQQθθθ using the simultaneous
EKF gives better performance compare to other choices of
covariance matrix QQQθθθ .
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Fig. 3. CSTR System: Comparison of parameter k f using Si-
multaneous EKF for different parameter covariance matri-
ces

Table 4. CSTR System: Comparison of ASSEE
values of states and parameters for Simultaneous

EKF

Variables Simultaneous EKF
QQQθθθ ,high QQQθθθ ,medium QQQθθθ , low

Ca 0.1606 0.1063 0.9419
Cb 0.1225 0.1062 0.1332
T 730.76 732.04 755.90
h 0.0172 0.0172 0.0172

k f ×1010 5.1581 1.2084 52.958

To get better insight into the effect of horizon lengths, the
performance of the RNK based estimator is compared with
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three choices of horizon lengths i.e., N = 10, 20 and 30. In
Figure (4), it can be seen that as the size of the window length
(N) increases, variability in the parameter estimates decreases
and the estimates become smoother. It can be seen that, the
estimates of parameter, k f , has zero mean and the variance
keeps decreasing with the increase of horizon length. The
ASSEE values for states and parameter for different horizon
lengths using RNK estimator are presented in Table 5. It is
observed that, the ASSEE values for both states and parameter
decreases with the increase in the horizon length.
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Fig. 4. CSTR System: Comparison of parameter k f using RNK
based estimator for different horizon lengths

Table 5. CSTR System: Comparison of ASSEE
values of states and parameters for RNK based

estimator

Variables RNK
N = 10 N = 20 N = 30

Ca 0.1572 0.1191 0.1081
Cb 0.1132 0.1087 0.1074
T 475.34 476.32 476.22
h 0.0172 0.0172 0.0172

k f ×1010 4.9535 2.4605 1.6536

Depending on the choice of QQQθθθ , simultaneous EKF estimator
is able to track the true parameter, but with a bias during the
transient region or with high variance in the estimates (refer
to Figure 3). On the other hand, the proposed RNK based
estimator generates unbiased estimates for all the choices of
window length. The bias observed in the simultaneous EKF is
a function of the choice of the tuning parameter, i.e., covariance
of the random walk model. In simulation studies, since variation
of the true parameters is known, it is possible to judge which
tuning parameter is suitable for simultaneous EKF. In practice,
however, true variation of the parameters is unknown. Thus,
it is difficult to decide which tuning parameter is best for
simultaneous EKF. The proposed RNK based estimator, on the
other hand, produces qualitatively similar performance for in
terms of tracking the true value. The only change with the
change in the window length is variance of the estimates.

4. CONCLUSION

The conventional approach to estimate drifting parameters is to
model them as random walk process and estimate simultane-
ously with the states using any recursive Bayesian estimator.
The main difficulty in this approach is tuning of the covari-
ance of random walk model. Recently, Valluru et al. (2017)
have developed a moving window based state and parameter
estimator which assumes that the parameters change slowly
and remain constant within the window. Also, in another de-
velopment, a moving window based recursive filter, receding

horizon nonlinear Kalman (RNK) filter has been proposed by
Rengaswamy et al. (2013). In this work, a novel simultane-
ous state and parameter estimator is proposed by combining
the window based parameter variation model with RNK filter
formulation. In this approach, the only tuning parameter is the
length of the moving window which is easier to select. The
effectiveness of the proposed approach is demonstrated by car-
rying out simulation studies on the benchmark quadruple tank
system and a CSTR system. RNK based parameter estimator is
carried out to identify the leaks occurring in the quadruple tank
and it is compared with the conventional simultaneous EKF and
the MHE approach. From the analysis of simulation studies, it is
observed that RNK estimator gives a better performance when
compared to that of simultaneous EKF and similar performance
as that of MHE. The computation time associated with MHE
implementation is significantly large, while the computation
burden associated with RNK based estimator is relatively less
when compared to that of MHE. The effectiveness of RNK
estimator is also demonstrated by conducting simulation studies
on a CSTR system and compared with the simultaneous EKF
approach. RNK based estimator results in unbiased estimates.
Further, it is also shown that as the window size increases
the estimates obtained using RNK based parameter estimator
become more accurate and smoother. However, the improved
accuracy is achieved at the cost of increased computational
burden. Currently research is in progress on demonstrating the
proposed approach on experimental studies and for larger di-
mensional systems.
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