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Abstract: Train basic resistance is important for the design of the automatic train operation,
which influences the efficiency, punctuality, stop precision, energy consumption, and the safety
of the train. The multi-innovation theory is a novel concept which can improve the accuracy of
parameter estimation and be used to modify the traditional recursive least squares algorithm.
In this paper, we derive the regularization form of the multi-innovation least squares algorithm
and apply it to the train basic resistance parameter estimation. The simulation results based
on the Yizhuang Line of Beijing Subway indicate that, compared with traditional least squares
algorithm, the multi-innovation least squares algorithm can provide higher estimation accuracy
and robustness, and can be used for online identification.

Keywords: Train basic resistance, Multi-innovation identification, Recursive identification,
Parameter estimation, Urban rail transit

1. INTRODUCTION

Urban rail transit has many advantages, such as large
capacity, high efficiency, punctuality, reliability and safety,
so it becomes the backbone of urban public transport.
Automatic train operation (ATO) plays a key role in
ensuring the safety and efficient operation of urban rail
transit operating with high speed and high density (see
Yu and Chen (2011)). In recent years, with development
of communication and control technology, the platform
screen doors (PSD) has been widely used. In order to
ensure that passengers are not disturbed when they get
on and off on the platform with PSD, the more accurate
stop precision is required (see Wang et al. (2013) and Chen
et al. (2013)).

The basic resistance is one important factor of stop preci-
sion, which is crucial to the design of ATO. Many factors
will effect the basic resistance, such as the wheel-rail cou-
pling (including the friction between axle and bearing, and
the friction between wheel and rail), the train’s outer and
air coupling (aerodynamic effect), pantograph and network
coupling with electric traction, etc. Due to the complex
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constitution of basic resistance, a large number of exper-
imental data are integrated according to the formation
mechanism, and the classical Davis formula was proposed
(see Davis (1926), Bernsteen et al. (1980), and Huang et al.
(2000), and Yuan (2015)).

Currently, a domestic enterprise needs one experimental
procedure called coast-down test to determine the param-
eter of basic resistance at the expense of time, labor, and
material, so it is necessary to find a method that does
not need coast-down test (see Bernsteen et al. (1980) and
Yuan (2015)). The train basic resistance depends strongly
on weather and track conditions, so many control decisions
of ATO can be improved if the basic resistance parameters
can be estimated online. The condition of track is complex
and unique, and it is inevitable that the collected data is
often discontinuous and abnormal because of the unex-
pected interruptions and measurement errors. All of these
will increase the difficulty of parameter identification, es-
pecially online identification.

The development of related fields such as system identifi-
cation, machine learning, and neural networks contributes
to the parameter estimation of the mathematical model.
Yuan (2015) applied genetic algorithm to the basic resis-
tance parameter estimation, but the algorithm has poor
real-time performance for online identification because of
tremendous number of iterations. The least squares algo-
rithm is widely used, which can realize off-line identifi-
cation of both linear regression model and pseudo-linear
regression model. However, every parameter of the basic
resistance has its own meaning, and the least squares algo-
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rithm can not be used for constrained estimation directly,
the regularization form of least squares algorithm was
introduced to solve this problem (see Haykin (2009)). Fur-
thermore, the recursive form of the least squares algorithm
can be used for online identification (see Goodwin and Sin
(1984)). Ding et al. (2010) proposed the multi-innovation
identification theory and applied it to the recursive least
squares (RLS) algorithm. The multi-innovation identifica-
tion algorithm has good performance in the case of missing
data and anomalous data (see Ding and Chen (2007)).

Based on the data of ATO, we preprocess the data of
the train and use the regularized least squares algorithm
to estimate the train basic resistance parameter. We also
apply the recursive least squares (RLS) algorithm, multi-
innovation least squares (MILS) algorithm, and interval-
varying multi-innovation least squares (V-MILS) algorith-
m to the basic resistance parameter estimation. These
algorithms can not only provide high estimation accuracy
but also performs well in the online identification, which
will reduce the expense of time, labor, and material for
organizing field test.

2. MODELING AND DATA PREPROCESSING

2.1 Modeling

The factors that affect the basic resistance are very com-
plex. An early comprehensive study of train resistance
was conducted by Davis (1926). Based on the formation
mechanism of basic resistance and empirical data, the
aerodynamic resistance generated by aerodynamic effect is
regarded as the square function of velocity, and the resis-
tance generated by mechanical resistance (such as wheel
and rail coupling, pantograph and network coupling) is
considered to be a linear function of velocity. The classical
Davis formula was described as

TR = A+
B

(W/n)
+ Cv +

DX

W
v2,

where the quantity TR is the basic resistance, W and v are
the weight and velocity of the train, respectively, n is the
number of axles, and X is an effective frontal cross section.
The constants A, B, C, and D are empirically adjusted to
fit the particular type of train considered (see Davis (1926)
and Bernsteen et al. (1980)).

For the convenience of parameter identification, we usually
simplify the Davis formula as follows

w0 = a+ bv + cv2,

where w0 is unit basic resistance (N/kN), parameter a
comprises resistances which are considered independent of
speed, but variable with axle load, parameter b contains
resistances which are proportional to the first power of the
velocity and originates from losses caused by mechanical
resistance, and parameter c comprises resistances which
are proportional to the square of the velocity and origi-
nates from losses caused by aerodynamic resistance.

However, parameters a, b, and c are slow time-varying
parameters due to weather, route, and train conditions.
Furthermore, the aerodynamic resistance and mechanical
resistance are both a source of resistance and a class of
noise source, and the train is disturbed by lots of noise in
the process of operation.

Thus, the Davis formula is rewritten as follows

w0(t) = a(t) + b(t)v(t) + c(t)v2(t) + ε(t), (1)

where v(t) is the velocity, a(t), b(t), and c(t) are the
parameters to be identified, ε(t) is the noise term.

Rewrite (1) in the form of an identification model

y(t) = ϕT(t)θ(t) + ε(t), (2)

where y(t) = w0(t) is the basic resistance, ϕT(t) =[
1, v(t), v2(t)

]T
is the information vector consisting of the

system input-output data, ε(t) is a stochastic noise with

zero mean, and θ(t) = [a(t), b(t), c(t)]
T

is the parameter
vector to be identified.

2.2 Data preprocessing

With the basic resistance of the train modelled, according
to the model in (2), we need the basic resistance and
velocity information for parameter identification.

The velocity is recorded as a function of time by ATO dur-
ing the train’s operation, so the decelaration is obtained
by differentiation, and the retarding force is obtained by
applying Newton’s second law, when the train is allowed
to coast on the track. Train resistance (w) is divided into
basic resistance (w0) and additional resistance (including
gradient resistance (wi), curve resistance (wr), and tunnel
resistance (ws)), so

w = w0 + wi + wr + ws, (3)

we can obtain the velocity and acceleration, then the
resistance (w) can be computed. Furthermore, when the
train is coasting on the track with no tunnel and no curve,
we can get the equation (4),

ws = 0, wr = 0, and wi = 1000 sin θ, (4)

in urban rail transit, the gradient is expressed in tanθ =
i0/00 which is very small, so

wi ≈ i.
Finally, we can get the basic resistance by

w0 = −100α− i, (5)

where α is acceleration (m/s2).

The Yizhuang Line of Beijing Subway is a typical urban
rail transit track contains both ground and underground
conditions where the train basic resistance will change
significantly. The actual data we used in this paper was
collected from the Yizhuang Line at the early morning of
October, 2016 and January, 2017.

The data is exported directly from the ATO, containing
the target distance, the speed limit, the velocity, the train’s
weight, the slope, and so on. The information is recorded
in every 200ms. Then, we compute the acceleration by (6).

α =
vt+1 − vt

T
, (6)

where T = 200ms, vt and vt+1 are velocity at the sampling
point t and t+ 1, respectively.

It shows in Fig. 1 that the coasting acceleration of the train
can be negative, positive or zero, which is abnormal. The
environment is complex, the interval time 200ms is too
short to obtain accurate data, because of measurement
error. In order to solve this problem, the segmented
processing method is used for data preprocessing.
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Fig. 1. Unpreprocessed data from ATO system
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Fig. 2. Method of segmenting data

As shown in Fig. 2, the segmentation interval is 0.5km/h,
and the velocity change is 0.5km/h at the end of the seg-
mentation, then the second section starts from the middle
of the first section and extends 0.5km/h. The velocity
data of each segment is obtained, and the acceleration of
each section is computed by the least squares estimation
method. The basic resistance is calculated by the (5), then
we can identify the parameters.

3. PARAMETER IDENTIFICATION

Rewrite the identification model in section 2 as

y(t) = ϕT(t)θ(t) + ε(t),

where y(t) = w0(t) is the basic resistance, ϕT(t) =[
1, v(t), v2(t)

]T
is the information vector consisting of the

system input-output data, ε(t) is a stochastic noise with

zero mean, and θ(t) = [a(t), b(t), c(t)]
T

is the parameter
vector to be identified. This model is a linear parameter
model.

Least squares (LS) algorithm is effective for linear and
nonlinear parametric systems identification. We can get
the LS algorithm by minimizing the Euclidean distance.

θ̂=

[
L∑

t=1

ϕ (t)ϕT (t)

]−1 L∑
t=1

ϕ (t) y (t) .

We use this algorithm to identify the basic resistance
parameter, and obtain the results

a = 23.74, b = −6.99× 10−1, c = 7.23× 10−3.

As the estimation result and the Fig. 3 show, the pa-
rameter b is negative, but the basic resistance can not be
negative. Every parameter of the basic resistance has its
own meaning, and the LS algorithm can not be used for
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Fig. 3. Traditional least squares algorithm

constrained identification directly. The regularization form
of LS algorithm can be used to solve this problem (see
Haykin (2009)), the new criterion function is

J(θ) =

N∑
t=1

(y(t)−ϕT(t)θ)
2

+
λ

2
‖θ‖22 ,

where
N∑
t=1

(y(t)−ϕT(t)θ)
2

is the criterion of traditional

least squares erstimation, ‖θ‖2 is the L2 norm of θ, and
N is the length of data, λ is restraint constant, so we obtain
the regularized least squares (LS) algorithm

θ̂=

[
N∑
t=1

ϕ (t)ϕT (t) +λI

]−1 N∑
t=1

ϕ (t) y (t) . (7)

We use this method to enhance the generalization ability
of the algorithm, and obtain the following results:
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Fig. 4. Regularized least squares algorithm

w0 = 5.15×10−1 + 8.597× 10−2v + 7.512× 10−4v2. (8)

From the Fig. 4 and the equation (8), it can be seen
that the identification results are more consistent with the
actual situation.

The least squares algorithm performs well in the off-line
estimation, but the basic resistance changes with the line
conditions, the weather, and the train’s own conditions.
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Therefore, it is necessary to estimate the train basic
resistance parameter online so that the ATO system can
adjust its control with more precise information.

The recursive least squares (RLS) algorithm can be used
for online identification (see Goodwin and Sin (1984)).
Compared with the traditional least squares algorithm,
it is more efficient computationally if we update the
estimates as new data becomes available online. The
recursive least squares algorithm is given by

θ̂ (t) = θ̂ (t− 1) +L (t)
[
y (t)−ϕT (t) θ̂ (t− 1)

]
, (9)

L(t) = P (t− 1)ϕ(t)
[
1 +ϕT(t)P (t− 1)ϕ(t)

]−1
, (10)

P (t) = [I −L(t)ϕT(t)]P (t− 1),P (0) = p0I, (11)

where θ̂(t) is the estimate of θ̂ at time t, θ̂(0) = 13/p0,
13 is a 3-dimensional column vector whose elements are
1, P (t) ∈ Rn×n is the covariance matrix, p0 is taken to
be a large positive number (e.g. p0 = 106), I is identity
matrix of suitable order (here, the order of I is 3), and the

scalar value e(t) = y (t)−ϕT (t) θ̂ (t− 1) ∈ R1 was defined
as innovation. Equation (9) updates the estimates at each
step using the innvation e(t).

Based on (7) and the derivation process of RLS algorithm,
in this paper, we derive the regularization form of RLS
algorithm (equation (12)-(16)).

θ̂(t) = θ̂(t− 1) +L(t)e(t)− λ

N
P (t)θ̂(t− 1), (12)

L(t) = Q(t)ϕ(t)
[
1 +ϕT(t)Q(t)ϕ(t)

]−1
, (13)

Q(t) =
N

λ
P (t− 1)

[
N

λ
I + P (t− 1)

]−1

, (14)

P (t) = [I −L(t)ϕT(t)]Q(t), P (0) = p0I. (15)

e(t) = y (t)−ϕT (t) θ̂ (t− 1) . (16)

The flowchart of the algorithm is shown in Fig. 5. We apply
this algorithm to the parameter identification of the train
basic resistance.

Ding et al. (2010) extended the RLS algorithm from
the view point of innovation modification and proposed
the multi-innovation least squares (MILS) algorithm. The
essential idea is to expand the scalar innovation e(t) to an
innovation matrix

E(p, t) =


y(t)−ϕT(t)θ̂(t− 1)

y(t− 1)−ϕT(t− 1)θ̂(t− 1)
.
.
.

y(t− p+ 1)−ϕT(t− p+ 1)θ̂(t− 1)

 ∈ Rp,

where the length of the innovation is p, the input and
output are also changed to the vector form

Φ(p, t) = [ϕ(t),ϕ(t− 1), ...,ϕ(t− p+ 1)] ∈ Rn×p,

Y (p, t) = [y(t), y(t− 1), ..., y(t− p+ 1)]
T ∈ Rp.

Then,

E(p, t) = Y (p, t)−ΦT(p, t)θ̂(t− 1).

The MILS algorithm with the innovation length p was
given as follows

θ̂(t) = θ̂(t− 1) +L(t)
[
Y (p, t)−ΦT(p, t)θ̂(t− 1)

]
,

Start

Data Preprocess

Initialize:   = 0

Form  ( ) and  ( )
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Fig. 5. The flowchart of the regularized RLS algorithm.

L(t)=P (t−1)Φ(p, t)
[
Ip+ ΦT(p, t)P (t−1)Φ(p, t)

]−1,
P (t) = P (t− 1)−L(t)ΦT(p, t)P (t− 1),

Φ(p, t) = [ϕ(t),ϕ(t− 1), ...,ϕ(t− p+ 1)] ,

Y (p, t) = [y(t), y(t− 1), ..., y(t− p+ 1)]
T
,

where Ip denotes an identity matrix of order p. When
p = 1, the MILS algorithm reduces to RLS algorithm.

We derive the regularization form of MILS algorithm for
train basic resistance parameter estimation.

θ̂(t) = θ̂(t− 1) +L(t)E(p, t)− λ

N
P (t)θ̂(t− 1),

L(t) = Q(t)Φ(p, t)
[
Ip + ΦT(p, t)Q(t)Φ(p, t)

]−1
,

Q(t) =
N

λ
P (t− 1)

[
N

λ
I + P (t− 1)

]−1

,

P (t) = [I −L(t)ΦT(p, t)]Q(t),

E(p, t) = Y (p, t)−ΦT(p, t)θ̂(t− 1),

Φ(p, t) = [ϕ(t),ϕ(t− 1), ...,ϕ(t− p+ 1)] ,

Y (p, t) = [y(t), y(t− 1), ..., y(t− p+ 1)]
T
.

The MILS algorithm extends the length of the innovation.
Because the MILS algorithm use not only the current data
but also the past data at each recursive step, parameter
estimation accuracy can be improved, and the algorithm
can also be used for online estimation.

We can obtain the results of the RLS algorithm (or the
MILS algorithm with p=1) and the MILS algorithm (with
p = 2, p = 4, and p = 6) from Fig. 6. For comparison,
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Fig. 6. MILS algorithm with p = 1, p = 2, p = 4, p = 6.

table 1 lists the differences between the results of LS
algorithm, RLS algorithm and the MILS algorithm.

Table 1. Parameter identification results

Algorithms
a b c σ2 Online

(100) (10−2) (10−3) (10−1) Yes/No

LS 0.515 8.597 0.751 5.632 No
RLS 0.783 8.511 0.758 5.632 Yes

p = 2 0.932 5.749 0.981 5.623 Yes
MILS p = 4 1.638 3.591 1.422 5.618 Yes

p = 6 2.194 1.941 1.262 5.613 Yes

In table 1, a, b, and c are basic resistance parameters, and
σ2 represents the variance.

The given results show that with the increase of the length
of the innovation, the variance of the identification results
is decreasing, so the MILS algorithm can achieve better
performance than RLS algorithm. Both RLS and MILS
algorithms can be used for online identification.

4. ANALYSIS AND VERIFICATION

4.1 Verification of results

We use a set of data for validation. The basic resistance
is calculated using the identification results obtained by
the LS and MILS algorithms, and then we use the basic
resistance to calculate the acceleration and the velocity
by (5) and (6). We compare the velocities calculated from
LS algorithm and MILS algorithm with the actual velocity
and obtain the Fig. 7 and table 2.

Table 2. Comparison of different algorithms

Algorithms Variances (σ2 = 10−2)

LS 0.99
MILS 0.88

The simulation results shows that the estimation results
become more accurate by applying the MILS algorithm to
the basic resistance parameter estimation.

Parameter online identification results are depicted in
Fig. 8, it can be observed from this figure that after about
70 recursions, the value of a, b, and c no longer change
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Fig. 7. Comparison of LS and MILS algorithms.
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significantly, the stabilization of parameters demonstrate
the real-time characteristic and validity of the algorithm.

Generally, the least squares algorithm and RLS algorithm
have fast convergence properties and high precision, and
the usage of the data is efficient. Thus, sometimes we use
the MILS algorithm, the improvement of the parameter
estimation accuracy is limited, and we can use LS al-
gorithm for off-line identification and RLS algorithm for
online identification. However, the condition of the train
and the track is complex, so it is inevitable that the
collected data is often discontinuous and abnormal because
of the unexpected interruption and measurement error.
The multi-innovation theory based identification algorith-
m has strong robustness, and can improve the accuracy
of identification greatly when we encounter this abnormal
situation.

4.2 Analysis of robustness

There are strict restrictions on the data used for parameter
estimation. The results of parameter identification can
be more accurate only when the train coasts on the
level tangent track. Therefore, the data used for basic
resistance parameter estimation collected by ATO usually
discontinuous. The train operating on track with complex
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conditions, ATO often collects discontinuous data and
anomalous data because of the unexpected interruption
and measurement error. These phenomena are inevitable
and will increase the difficulty of parameter identification
especially online identification.

The multi-innovation theory based identification algorith-
m also has good performance in the case of anomalous data
and missing-data and can provide fast convergence and
high parameter estimation accuracy, the interval-varying
multi-innovation least squares (V-MILS) algorithm was
given by Ding et al. (2010),

θ̂(ts)= θ̂(ts−1) +L(ts)
[
Y (p, ts)−ΦT(p, ts) θ̂(ts−1)

]
,

L (ts) =P (ts−1) Φ (p, ts)

×
[
Ip + ΦT (p, ts) P (ts−1) Φ (p, ts)

]−1
,

P (ts) = P (ts−1)−L (ts) ΦT (p, ts)P (ts−1) ,

Φ(p, ts) = [ϕ(ts),ϕ(ts − 1), ...,ϕ(ts − p+ 1)] ,

Y (p, ts) = [y(ts), y(ts − 1), ..., y(ts − p+ 1)]
T
,

where 0 = t0 < t1 < t2 < ..., and 1 ≤ t∗s = ts− ts−1.

The parameter estimate θ̂ (t) is updated only at instant
t = ts, and so is the convariance matrix P . The V-MILS
algorithm computes the parameter estimates using the
interval-varying iteration, so it can overcome the affect of
bad data on the parameter estimates.

We also derive the regularization form of V-MILS algo-
rithm for the train basic resistance parameter estimation

θ̂(ts) = θ̂(ts−1) +L(ts)E(p, ts)−
λ

N
P (ts)θ̂(ts−1),

L(ts)=Q(ts)Φ(p, ts)
[
Ip+ ΦT(p, ts)Q(ts)Φ(p, ts)

]−1
,

Q(ts) =
N

λ
P (ts−1)

[
N

λ
I + P (ts−1)

]−1

,

P (ts) = [I −L(ts)Φ
T(p, ts)]Q(ts),

E(p, ts) = Y (p, ts)−ΦT(p, ts)θ̂(ts−1),

Φ(p, ts) = [ϕ(ts),ϕ(ts − 1), ...,ϕ(ts − p+ 1)] ,

Y (p, ts) = [y(ts), y(ts − 1), ..., y(ts − p+ 1)]
T
.

We chose a set of data that contain anomalous data
collected from the Yizhaung Line for verification.
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Fig. 9. Comparison of LS and V-MILS algorithms.

The given results in Fig. 9 show that the performance of
traditional LS algorithm is poor in the case anomalous
data, but the V-MILS algorithm can skip the anomalous
data so that we can get more reliable parameters.

5. CONCLUSION

The multi-innovation theory based identification algorith-
m can improve the parameter estimation accuracy, we ap-
plied it to the basic resistance parameter estimation using
the data collected from Yizhaung Line of Beijing Subway.
By comparing the MILS algorithm and V-MILS algorithm
with traditional least squares algorithm, we conclude that
the multi-innovation least squares algorithm can not only
provide high estimation accuracy but also perform well in
the case of missing data and anomalous data.

The MILS algorithm and V-MILS algorithm can also be
used for online identification, which will make the train
basic resistance parameter estimation simpler and more
accurate, and will reduce the expense of time, labor, and
material for organizing field test.
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