
 

1. INTRODUCTION 

Batch and semi-batch processes are commonly used to 

manufacture high-value products with low quantities[1]. A 

large number of specialty chemicals, polymers, and 

pharmaceuticals are produced in batch process. In order to 

obtain the maximum benefit from batch processes, it is 

necessary to optimize operation[2]. Although sophisticated 

online measurements of product qualities are available, 

application in practical industrial processes is rather limited. 

Moreover, the uncertainties in the process behaviour, the 

absence of steady state, nonlinear and time-varying dynamics 

over a wide range of operation conditions complicate the 

optimization of these kinds of processes[3].  

Multivariate statistical process control techniques have 

been applied successfully in several industrial applications for 

online process modeling, control and optimization et al.[4-7]. 

In order to build a reliable process optimization model, these 

techniques require that the data representing the common 

cause variability (CCV) to which the process is subject to be 

available. However, process data are usually insufficient to 

build a process model for new process based on multivariate 

statistical techniques. Experimental campaigns designed to 

produce CCV data are carried out very rarely, especially if the 

cost of raw materials is high or the product manufacturing is 

subject to a rigid regulatory environment (as in the case of the 

food and pharmaceutical industries, for example). Some 

researchers have studied the problems and proposed few 

methods, Chunhui Zhao tackled adaptive monitoring method 

for batch processes based on phase dissimilarity updating 

with limited modeling data, where statistical analysis models 

are developed implicitly based on the Gaussian-distribution 

assumption from batch to batch[8], in order to solve 

independent factors that underlie sets of non-Gaussian 

process measurements, independent component analysis 

（ ICA） is used to build monitoring model with limited 

modeling data[9]. However, these methods do not solve the 

problem of insufficient data. 

There are a large number of similar processes in modern 

industry, which storages a wealth of process data. Traditional 

multivariate statistical techniques just consider the single 

process, the process is treated as a completely independent 

process, and there is no correlation between similar processes. 

This leads to a contradiction: the old process data is rich, but 

the new process is seriously inadequate. 

Is it possible to transfer process data from old and similar 

process to a new process to aid the optimization of the new 

process? In general, two plants dedicated to the same 

manufacturing process may share several characteristics. For 

example, they may be geometrically similar or have some 

common measured variables. Most importantly, the 

fundamental laws describing the physics of the system are 

expected to be the same in both plants, because the underlying 

physical phenomena driving the process are the same. 
Theidea of transfer has been used in the actual industrial 

process, Jaeckle and MacGregor [10]tackled the product 

transfer problem, and proposed a methodology based on 
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latent variable models (LVMs) to transfer products between 

different manufacturing plants. García-Muñoz et al [11] 

further investigated and proposed a new modeling technique, 

called joint-Y partial least squares (JY-PLS) regression, to 

model the correlation between the operating conditions in 

different plants through the latent space generated by the 

quality of the manufactured products. The effectiveness of 

this method has been tested industrially in different 

applications, for product scale-up and data standardization 

purposes [12, 13]. However, the product transfer problem 

considered in all the above studies is fundamentally different 

from the process transfer problem considered in the present 

work. Tomba and Facco [14]explore the issue of the transfer 

of process monitoring models between different plants that 

exploit the same manufacturing process to manufacture the 

same product and combining fundamental knowledge and 

latent variable techniques to transfer process monitoring 

models between plants. Methodologies for transferring a 

model to a new process have been recently proposed by Lu 

and coworkers[15, 16]. Although these procedures are 

effective, they just refer to the transfer of predictive models 

and monitoring models, there is no work published on the 

process transfer for the quality optimization of batch 

processes.  

In this paper, a dual modifier adaptation optimization 

strategy based on process transfer model for the quality 

optimization of new batch process is proposed. First of all, the 

similar processes data are transfer to the new process data by 

process transfer model (PTM), which is chosen as JY-PLS in 

this paper. Further, the model-plant mismatch of the process 

transfer based quality optimization control is firstly proposed 

and solved by using just-in-time model to compensate the gap 

between suboptimal and optimal. In simulation studies, a 

population balance model for a cobalt oxalate synthesis 

process is modeled by the method of moments and used for 

the simulation study. The proposed optimization strategy 

results in improved optimization performances compared to 

that of the method without transfer data from batch to batch. 

This paper is organized as follows. In Section 2, the PTM 

based similar batch process transfer is introduced. Then PTM 

based dual modifier adaptation optimization strategy is 

described in Section 3. Section 4 analyzes the optimization 

performances, and the conclusions are given in Section 5. 

2. PROCESS TRANSFER STRATEGY 

2.1 Process similarity 

In industrial production, there are a large number of similar 

production process which product the same production, use 

the same raw materials and the similar equipment. The most 

important is the physical principle or chemical principle, 

driving the entire production process, is the same .From data 

level, data of similar processes is highly correlated. The 

methods that commonly used to measure similarity is mainly 

based on the definition of distance, such as euclidean distance, 

Minkowski distance, Chebyshev distance. Although the 

production process is similar and final quality is the same, 

there are many difference between different plants include the 

number of monitoring variables, the types of monitoring 

variables, and differences of environment. It is not 

appropriate to directly use distance to judge the similarity. 

Latent variable techniques have received a great deal of 

attention from researchers in the past decades. The 

multivariate projection to latent variable space can effectively 

reduce the dimension and obtain several completely 

independent latent variables. It is suitable to measure process 

similarity by calculating distance of latent variable. For two 

similar batch process, a represents the new process and b is 

based process. Their times is same , but the number and type 

of variable and number of batches are different. Flores-

Cerrillo discuss the unfolded way of batch process data, as 

shown in the paper [17].   

2.2 Process Transfer Model JY-PLS 

  After batch data is unfolded, four data matrices available 

are Xa , Xb, Ya, Yb (subscript “a” represent new process, “b” 

represent based process). Due to the similarity of plant a and 

b, the same latent variable is owned and Tb is transferred to 

solve the problem of data lack. It is assumed that matrices Ya 

and Yb lie in a common latent variable (LV) plane, then the 

loadings Qa and Qb for the two PLS models built should be 

just a rotation of each other and can therefore be defined by a 

single joint loading matrix QJ, QJ can be obtained by the joint 

quality YJ . The only restriction in the JYPLS is that Ya and Yb 

must have the same quality variables defining their 

columns[11]. However, the JYPLS model does not impose 

restrictions on the number of columns in Xa and Xb, nor on the 

nature of the variables in Xa and Xb, nor on the number of 

observations per site. 

  The weights and loadings for the Xa and Xb matrices (Pa,Wa , 

Pb, Wb,) have the same interpretation as in the usual PLS 

regression models, but with respect to the combined plane 

mapped by the Joint Y matrix and defined by the common 

loadings matrix QJ [11] .The JYPLS model is defined by Eq.

（1）-（6） 

  T

a a a a
X = T P + E

  (1) 

                                      

 
 
 
 

a T
J J JY

b

T
Y = Q + E

T
 (2) 

 

a a a
T = X W

 (3) 

 


b b b
T = X W   (4) 

YJE represent the prediction errors. when  xnew is obtained, 

prediction is 

   T

J
B = Wa Q

  (5) 

 
newnew

  T
y x B

  (6) 

2.3 Model Update 

By acquired new data [ Xa ,Ya ]and based data [Xb ,Yb], the 

initial regression function can be obtained. With the operation 

of the new process, available data is used to fill data set of 

new process and update the model. If the k new batch data 

from the optimization steps is obtained, the model updating 

step can be achieved by eq.7 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

786



 
( 1) ( 1)

( ) ( )

( ) ( )

k k

k k

k k

    
   
   

X Y
X = , Y =

x y
  (7) 

and refitting the JY-PLS model 

      
PLSJY

k k k

  
  JX Y Q   (8) 

With production going on, new data are constantly add and 

furtherly meet quantity requirements. Nevertheless, process 

transfer model, which includes based process, can’t perfectly 

match new process and will affect optimization performance. 

In order to further improve the online optimization 

performance of the new batch plant. The based data are 

replaced one by one. 

3. OPTIMIZATION STRATEGY 

In Section 2, the process transfer model（JY-PLS）is applied 

to transfer data from old process to solve the problem that new 

process data is insufficient. However, it is unavoidable that 

there are differences between the old process and the new 

process, which further leads to the model-plant mismatch . 

whatever within-batch or/and batch-to-batch. In order to 

overcome this problem, a dual modifier-adaptation strategy 

for batch optimization is proposed in this section. Firstly, 

optimization problem is formulized. Then, within-batch 

optimization with data-based compensation method is used to 

modifier batch mismatch in real time. Finally, batch-to-batch 

optimization is used to further improve final product quality. 

3.1 Formulation of  the Optimization Problem 

The optimization of batch process have caused many 

researches, which can be summarized as three types as 

followed 1）within-batch optimization 2) batch-to-batch 

optimization 3) within-batch and batch-to-batch 

optimization[18]. These optimization methods just take single 

plant into consideration. However, PTM based on 

optimization include two similar processes. In process 

transfer, similar processes exist difference include equipment 

differences, circumstance differences, technology differences. 

These differencees lead to the model-plant mismatch. In 

practice, a static map can be used to describe the relationship 

between the process inputs Nu  and the final quality 

measurements N

py  [19].Here, the subscript “p” 

represents a quantity related to the plant. Hence, the static 

batch optimization problem based on PTM can be formulated 

as follows 

 
 

 

min ( ) :

. . ( ) : 0

p

ps t

 

 

p
u

p

u u,y

G u g u,y
  (9) 

where ϕ(⋅) is the plant performance index, and g(⋅) is the 

constraints imposed on the inputs and quality variables. 

According to the mapping relating the process inputs and 

the qualities, an approximation of JY-PLS model is available 

in the form 

    
T

y yy u, B = σ B u +μ   (10)           

where 
y and 

y are the mean and the standard deviation 

of the quality variables, ŷ is the predicted product qualities, ∘ 
means Hadamard product. 

It can get suboptimality to minimize the mean-square-error 

of prediction. These can’t solve the plant-model mismatch, 

which results from process transfer. Another problems that 

need to pay attention to is such mismatch is existing in batch-

to-batch and /or within batch process. 

3.2 Within-batch Optimization 

  In practical industries, disturbance often affects the 

operation of the batch process, which make the final product 

quality outside of a defined in-control region. In addition, 

because process transfer model include two similar process 

data which make model-plant mismatch always exists. MCC 

is usually used for within-batch optimization and acquire 

great optimization results [20]. In MCC, a complete batch 

variable is divided by several decision points. Once reaching 

decision points, a optimization action is utilized to adjust 

manipulated variable. When a new batch is under processed, 

at decision point ki, there exist a regressor vector 
T

X (Fig. 1) 

described as 

0 0 , , , ,

T T T T T T T T T

m c m p m f c p c fx x x x x x x x x    
   

    (11) 

where 
,

T

m px  is a vector of all measured variables available up 

to time ki, ,

T

m fx  is a vector of unmeasured variables not 

available at ki but that will available in the future, ,

T

c px  is a 

vector of the known manipulated variables and 
,

T

c fx  is a 

vector of the future manipulated variables which will 

determined by the control approach. Unavailable data 
,

T

m fx  

and 
,

T

c fx  can get by way of PCA prediction [20]. If directly 

optimize new process, it only get suboptimal u  because of 

plant-model mismatch. However, the similarity between the 

transfer processes makes suboptimal near to the optimal 

solution 
pu .The following relation can be obtained by 

using Taylor formula expansion 

     p p

J
J J    

  


u = u u u
u

       (12) 

where ( )J is comprehensive performance index,   is 

infinitesimal of higher order, 

Current batch

Current batch

Known samples Unknown samples

Known samples Unknown samples

Decision time 

Decision time 

a

b

 
Fig.1 Data used for model prediction 

 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

787



  J H  u   (13) 

where    pJ J u J u    , pu u u    ,JITL(Just-

In-Time Learning) PLS proposed by LI Kang [21]can obtain 

the relationship between u and J, and can compensate for the 

plant-model mismatch. The optimization problem is 

transformed into the following formula 

 

 

 

min max

max

. . 0

u
J H

s t g


  

 

    

u

u

u u u

  (14) 

3.3 batch-to-batch optimization 

To limit the deterioration of control performance due to 

model plant mismatches and unknown disturbance, a batch-

to-batch control strategy is used at the end of the current batch. 

It utilizes the information of the current and previous batch 

run to enhance the operation of the next batch. 

In order to solve the model-plant mismatch, modifier-

adaptation methodology was proposed and have developed a 

variety of methods[17-20]. Generally, two methods are 

summarized as followed ,1) modifying the cost 2) modifying 

the constraints of the optimization problem. In such a way that 

the necessary condition of optimization of the model and the 

plant can match. 

In this work, a linear modification is used based on the JY-

PLS model. Letting  ku denote the kth scaled operation point, 

the model output is modified as 

      ( ) ( ) uk k   (k) (k) (k)m
y u,B y u,B ε λ σ u - u  (15) 

where 
u  is the standard deviation of the input matrix, and

 
M

k
   and

 
M N

k
   are the kth model modifiers, 

which can be calculated as follows 

    (k)(k) p (k)
ε = y u - y u,B   (16) 

   
 

 

p
(k)(k)(k) (k)

y y
λ = u - u ,B

u u
      (17) 

According to problem (9),optimization problem with 

modifier is translated into 

  
  
  

( )( )m m

( )( )m

min ( ) : , ,

. . ( ) : , , 0

kk

kkms t G

 

 

u
u u y u B

u g u y u B

     (18) 

The simplest adaptation strategy is to implement the rescaled 

optimal solution ( 1)ku

 obtained from Eq. (18). However, 

this simple way may lead to excessive correction when the 

operation is far away from the optimum, and also it may make 

the adaptation strategy very sensitive to measurement noise. 

A better choice consists of filtering the next operating point 

with a first-order exponential filter 

 ( 1) ( ) ( 1) ( 1)( )k k k kg

     u I - K u Ku ρ  (19) 

where 
N NK  is a diagonal gain matrix. 

( 1)kρ  is a 

vector of N original excitation signals composed of 1's and 

−1's, and g is the amplitude associated with the inputs. 

4. CASE STUDY 

4.1 Process Description 

A cobalt oxalate synthesis process in cobalt 

hydrometallurgy industrial is a liquid phase reaction of cobalt 

chloride and ammonium oxalate, and cobalt oxalate is 

produced by the following reaction 

2 4 2 2 4 2 4 4
A B C D

CoCl + (NH ) C O CoC O +2NH Cl    (20) 

The process flow sheet is shown in Fig.2 .The process consists 

of two important parts which are ammonium oxalate dissolver 

and crystallizer. The process of cobalt oxalate is carried out in 

the crystallizer operated with continuously stirring. In order 

to maintain the constant temperature in the crystallizer, a 

heating jacket and PI controller are used. Specific procedures 

can be seen in the article [22]. 

The moment model of the crystallization process is shown 

by the following set of ordinary differential equations: 

B

dV
F

dt
                               (21)                                        

0 0Bd F
B

dt V

 
                           (22)                                    

1 1,2
j B j

j

d F
jG j

dt V

 
               (23) 

22
3

( )

B BI AI B
c v

AI B

F C V F CdC
k G

dt V F t V
   


        (24) 

where V is the suspension volume, uj is the jth moment of the 

PSD, and C is the solution concentration. Band G are the 

crystal nucleation rate and growth rate, respectively, V0 is the 

initial volume of cobalt chloride, c is the crystal density, 

and kv is the volumetric shape factor. The model parameters 

of the synthesis process are given as followed. 

Ammonium oxalate 

dissolver Crystallizer

Separation and drier

M

Pure water

M

Fig.2The schematic diagram of the cobalt oxalate synthesis process 
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20.0001(T 273) 0.001(T 273) 0.1sC       (25) 

 
31 4 2.7756.31 10 exp( 1.3621 10 )B T C      (26) 

 
14 42.80 10 exp( 1.584 10 ) CG T      (27) 

In this paper, the objective function is to maximize the mean 

crystal size defined in Equation (28), leading to the 

optimization problem (29) 

 
1

0

(t )

(t )

f

f
Ln




  (28) 

 
(t)

max
F

Ln
 

 
2 2,min

0
. .. ( )

( )

ft

L U

s t F t C dt C

F F t F



 

   (29)                  

where FL and FU are the lower and upper bounds on the feed 

rate of ammonium oxalate, and C2,min is the minimum quantity 

of ammonium oxalate added in the crystallizer 

4.2 Within-batch optimization 

In order to optimize the batch process in time and obtain 

optimal solution , the MCC control strategy with optimal 

setting compensation is used. 0.1% disturbance is added to the 

input variables. Fig.3 shows that the PSD of cobalt oxalate 

increases with the batch going and gradually converge to 2.3. 

In order to compare the batch optimization effects, the method 

without within-batch optimization is used for comparison. As 

shown in Fig.4, within-batch optimization can greatly 

improve the PSD of cobalt oxalate. The 10th, 50th, and 80th 

batches are randomly selected. Witnin-batch optimization can 

optimize the batch process and improve the final quality. 

4.3 Batch-to-batch optimization 

Within-batch optimization can optimize the batch process 

in real time and control the final quality in the effective area. 

However, batch process is constantly repeated and there is a 

strong link between current batch and previous batch, 

previous batch condition will affect current batch 

performance. In addition, plant-model mismatch and 

disturbance between batches may cause the next batch away 

optimal quality. Therefore, batch-to-batch optimization is a 

necessary part. Fig.4 shows crystal size of cobalt oxalate with 

batch evolution, while Fig.5 show comparison of the feeding 

law trajectories for different iterations. With batch process 

running, crystal size of cobalt oxalate gradually improve , at 

Table1 variable setting between new and based process 

 Variable Based process New process 

 
Circumstances 

Difference 

Concentration of 2CoCl  (mol/m3) 1089.6---1111.6 1092.6—1114.6 

Concentration of 
4 2 2 4(NH ) C O  (mol/m3) 1676.6---1710.4 1666.7---1700.3 

Initial volume of 2CoCl  (m3) 1.39----1.42 1.40----1.44 

 
Technology 

Difference 

kbK（ ） 41.3621  10    41.352  10    

kgK（ ） 41.5840  10    41.5730  10    
1 ) (g sk m   2.70×1014 2.83×1014 

 

 
Fig.4 batch-to-batch optimization 

 
Fig.5 Comparison of the feeding law trajectories for different 

iterations 
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Fig.3 Comparison between within-batch optimization and 

without optimization 

 

Fig.5 Comparison between within-batch 

optimization and without optimization 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

789



the same time, Evolution of the total quantity of ammonium 

oxalate added in crystallizer is gradually decrease and 

converge to 1500.  

5. CONCLUSIONS   

In this paper, a novel dual optimization method between 

similar batch processes based on PTM is proposed. It 

combines the optimal setting compensation method and 

batch-to-batch modifier-adapt strategy. During the evolution 

of a batch, MCC control method is utilized to determine the 

optimization points and compensate the error between 

suboptimal and optimal. Batch-to-batch optimization is used 

to overcome plant-model mismatch. A PTM is applied to 

solve the problem that new process data is lack, which 

transfer similar based process data to the new process. The 

proposed method can solve the plant-model mismatch due to 

process transfer, especially for solving the within-batch 

mismatch. The proposed approach is illustrated on cobalt 

oxalate synthesis process. Simulation results demonstrate that 

the proposed method can effectively improve final quality 

prediction and further optimize final quality.  
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